PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 506-509
Article title

Numerical Simulations of Glide Dislocations in Persistent Slip Band

Content
Title variants
Languages of publication
EN
Abstracts
EN
For the purpose of estimation of possible inaccuracy in standard discrete dislocation dynamics simulations, we study the motion of interacting dislocations in two regimes: the standard stress control and the total strain control. For demonstration of the difference, we consider two dislocations of opposite signs, gliding in parallel slip planes in a channel of a persistent slip band. Exposed to the applied stress, the dislocations move, bow out, and form a dipole. We investigate the passing stress needed for the dislocations to escape each from other, considering the stress controlled regime and the total strain controlled regime. The motion is described by the mean curvature flow and treated by means of the direct (parametric) method. The results of numerical experiments indicate that the stress control and the total strain control provide upper and lower estimate of the passing stress, respectively, and that these two estimates differ by approximately 10%.
Keywords
EN
Year
Volume
128
Issue
4
Pages
506-509
Physical description
Dates
published
2015-10
References
  • [1] B. Devincre, Solid State Commun. 93, 875 (1995), doi: 10.1016/0038-1098(94)00894-9
  • [2] N. Ghoniem, L. Sun, Phys. Rev. B 60, 128 (1999), doi: 10.1103/PhysRevB.60.128
  • [3] A. Vattré, B. Devincre, F. Feyel, R. Gatti, S. Groh, O. Jamond, A. Roos, J. Mech. Phys. Solids 63, 491 (2014), doi: 10.1016/j.jmps.2013.07.003
  • [4] J. Křišt'an, J. Kratochvíl, V. Minárik, M. Beneš, Modell. Simul. Mater. Sci. Eng. 17, 045009 (2009), doi: 10.1088/0965-0393/17/4/045009
  • [5] P. Pauš, M. Beneš, J. Kratochvíl, Acta Mater. 61, 7917 (2013), doi: 10.1016/j.actamat.2013.09.032
  • [6] M. Beneš, J. Kratochvíl, J. Křišt'an, V. Minárik, P. Pauš, Eur. Phys. J. ST 177, 177 (2009), doi: 10.1140/epjst/e2009-01174-7
  • [7] P. Pauš, M. Beneš, Kybernetika 45, 591 (2009)
  • [8] M. Kolář, M. Beneš, D. Ševčovič, J. Kratochvíl, IAENG Int. J. Appl. Math. 45, 198 (2015) http://iaeng.org/IJAM/issues_v45/issue_3/IJAM_45_3_05.pdf
  • [9] D. Hull, D. Bacon, Introduction to Dislocations, Butterworth-Heinemann, 2011, doi: 10.1016/S1369-7021(11)70217-6
  • [10] M. Peach, J.S. Koehler, Phys. Rev. 80, 436 (1950), doi: 10.1103/PhysRev.80.436
  • [11] J. Křišt'an, J. Kratochvíl, Philos. Mag. 87, 4593 (2007), doi: 10.1080/14786430701576324
  • [12] V. Minárik, M. Beneš, J. Kratochvíl, J. Appl. Phys. 107, 061802 (2010), doi: 10.1063/1.3340518
  • [13] D. Ševčovič, S. Yazaki, Jpn. J. Ind. Appl. Math. 28, 413 (2011), doi: 10.1007/s13160-011-0046-9
  • [14] H. Mughrabi, F. Pschenitzka, Philos. Mag. 85, 3029 (2005), doi: 10.1080/14786430500079975
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n408kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.