PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 4 | 497-502
Article title

The Very High Cycle Fatigue Behaviour of Ti-6Al-4V Alloy

Content
Title variants
Languages of publication
EN
Abstracts
EN
The high cycle and very high cycle fatigue properties of the titanium alloy Ti-6Al-4V with a duplex microstructure were investigated at room temperature. High cycle fatigue tests were performed in the range from 10⁴ to 10⁷ cycles by rotating bending at the frequency of 30 Hz. The very high cycle fatigue tests were carried out in the range from 10⁷ to 10¹⁰ cycles in tension-compression on an ultrasonic fatigue testing machine at the frequency of 20 kHz. The stress amplitude was found to decrease with increasing number of cycles in the whole range from 10⁴ up to 10⁹ cycles and only at the highest number of cycles (N_{F}=10⁹) the alloy exhibits the fatigue limit of 460 MPa. The detail fractographic analysis was performed to characterize the fatigue failure mechanisms. Both subsurface and surface crack initiation were observed in very high cycle fatigue region. No inclusions, but only local chemical inhomogeneity in microstructure was observed at the locations of subsurface fatigue crack initiation in alpha-grains.
Keywords
EN
Year
Volume
128
Issue
4
Pages
497-502
Physical description
Dates
published
2015-10
References
  • [1] L. Škublová, B. Hadzima, L. Borbás, M. Vitosová, Mater. Eng. - Mater. Inz. 15, 18 (2008)
  • [2] S. Suresh, Fatigue of Materials, University Press, Cambridge 2004
  • [3] F. Nový, O. Bokůvka, P. Palček, M. Chalupová, Proc. Eng. 10, 1408 (2011), doi: 10.1016/j.proeng.2011.04.234
  • [4] I. Marines, X. Bin, C. Bathias, Int. J. Fatigue 25, 1101 (2003), doi: 10.1016/S0142-1123(03)00147-6
  • [5] H. Mughrabi, Int. J. Fatigue 28, 1501 (2006), doi: 10.1016/j.ijfatigue.2005.05.018
  • [6] F. Nový, M. Činčala, P. Kopas, O. Bokůvka, Mater. Sci. Eng. A 462, 189 (2007), doi: 10.1016/S0142-1123(03)00116-6
  • [7] C. Bathias, P.C. Paris, Gigacycle Fatigue in Mechanical Practice, Marcel Dekker, New York 2005
  • [8] H. Mayer, M. Papakyriacou, B. Zettl, S. Vacic, Int. J. Fatigue 27, 1076 (2005), doi: 10.1016/j.ijfatigue.2005.02.002
  • [9] F. Nový, M. Janeček, V. Škorík, J. Müller, L. Wagner, Int. J. Mater. Res. 100, 288 (2009), doi: 10.3139/146.110043
  • [10] J.H. Zhuo, Z.G. Wang, E.H. Han, Mater. Sci. Eng. A 473, 147 (2008), doi: 10.1016/j.msea.2007.04.062
  • [11] J. Mueller, H.J. Rack, L. Wagner, in: Ti-2007 Science and Technology, Eds. M. Niinomi, S. Akiyama, M. Ibeda, M. Hagiwara, K. Maruyama, The Japan Institute of Metals, Sendai 2007, p. 383
  • [12] A. Puškár, Ultrasonics 31, 61 (1993), doi: 10.1016/0041-624X(93)90034-W
  • [13] F. Appel, J.D.H. Paul, M. Oehring, in: Gamma Titanium Aluminide Alloys: Science and Technology, Wiley-VCH Verlag, Weinheim 2011, p. 357
  • [14] Titanium and Titanium Alloys - Fundamentals and Applications, Eds. C. Leyens, M. Peters, WILEY-VCH Verlag, Weinheim 2003
  • [15] M. Long, H.J.Rack, Biomaterials 19, 1621 (1998), doi: 10.1016/0041-624X(93)90034-W
  • [l6] W. Weibull, Fatigue Testing and Analysis of Results, Pergamon, Oxford 1961, p. 7
  • [l7] J. Kohout, S. Věchet, Int. J. Fatigue 23, 175 (2001), doi: 10.1016/S0142-1123(00)00082-7
  • [l8] A. Buch, Fatigue Strength Calculation, TransTech Publications, Switzerland 1988
  • [19] E. Takeuchi, Y. Furuya, N. Nagashima, S. Matsuoka, Fatigue Fract. Eng. Mater. Struct. 31, 599 (2008), doi: 10.1111/j.1460-2695.2008.01257.x
  • [20] R.D. Pollak, A.N. Palazotto, Probabilist. Eng. Mech. 24, 236 (2009), doi: 10.1111/j.1460-2695.2008.01257.x
  • [21] K. Yamaguchi, T. Abe, K. Kobayashi, E. Takeuchi, H. Hirukawa, Y. Maeda, N. Nagashima, M. Hayakawa, Y. Furuya, M. Shimodaira, K. Miyahara, Sci. Technol. Adv. Mater. 8, 545 (2007), doi: 10.1016/j.stam.2007.09.009
  • [22] R.J. Morrissey, T. Nicholas, Int. J. Fatigue 27, 1608 (2005), doi: 10.1016/S0142-1123(00)00082-7
  • [23] Y. Furuya, S. Matsuoka, T. Abe, K. Yamaguchi, Scr. Mater. 46, 157 (2002), doi: 10.1016/S1359-6462(01)01213-1
  • [24] I. Bantounas, D. Dye, T.C. Lindley,Acta Mater. 57, 3584 (2009), doi: 10.1016/S0142-1123(03)00116-6
  • [25] M.R. Bache, Int. J. Fatigue 21, S105 (1999), doi: 10.1016/s0142-1123(99)00061-4
  • [26] J. Stolarz, J. Foc, Mater. Sci. Eng. A 319-321, 501 (2001), doi: 10.1016/j.msea.2007.04.062
  • [27] G. Chai, Int. J. Fatigue 28, 1611 (2006), doi: 10.1016/j.ijfatigue.2005.06.054
  • [28] M. Janeček, F. Nový, J. Stráský, P. Harcuba, L. Wagner, J. Mech. Behav. Biomed. Mater. 4, 417 (2011), doi: 10.1016/j.jmbbm.2010.12.001
  • [29] R.K. Nalla, B.L. Boyce, J.P. Campel, J.O. Peters, J.O. Ritchie, Metall. Mater. Trans. 33A, 899 (2002), doi: 10.1007/s11661-002-1023-3
  • [30] K. Tokaji, Scr. Mater. 54, 2143 (2006), doi: 10.1016/j.scriptamat.2006.02.043
  • [31] S. Mall, T. Nicholas, Tae-Won Park, Int. J. Fatigue 25, 1109 (2003), doi: 10.1016/S0142-1123(03)00116-6
  • [32] M. Peters, A. Gysler, G. Luetjering, in: Titanium `80 Science and Technology, Eds. H. Kimura, O. Izumi, Metallurgical Society of AIME, Warrendale 1980, p. 1777
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n406kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.