Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
Thin film series consisting of Ti, V, TiO₂ and V₂O₅ layer with different layer geometries, sequences and thicknesses have been prepared by the sputtering technique. The hydrogen depth profile of selected films upon hydrogen charging at 1 bar and/or hydrogenation at pressure up to 102 bar was determined by using secondary ion mass spectrometry and nuclear reaction analysis using a N-15 beam. The highest hydrogen storage with a concentration up to 50 at.% was found in the pure Ti and Ti-contained layer, while it amounts to around 30% in the metallic Ti-V-Ni layer. Hydrogen can diffuse through the TiO₂ layer without accumulation, but can be stored in the VO₂ layer in some cases. Hydrogen can remove the preferential Ti orientation in the films and induce a complete transition of V₂O₅ into VO₂ in the films.
Discipline
- 68.60.-p: Physical properties of thin films, nonelectronic
- 61.05.C-: X-ray diffraction and scattering(for x-ray diffractometers, see 07.85.Jy; for x-ray studies of crystal defects, see 61.72.Dd, Ff)
- 68.49.-h: Surface characterization by particle-surface scattering(see also 34.35.+a Interactions of atoms and molecules with surfaces)
- 81.15.Cd: Deposition by sputtering
Journal
Year
Volume
Issue
Pages
431-439
Physical description
Dates
published
2015-09
received
2015-01-24
(unknown)
2015-07-06
Contributors
author
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
author
- Faculty of Computer Science, Electronics and Telecommunication, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
author
- Institute of Physics, Pedagogical University, 30-084 Kraków, Poland
author
- Institute of Physics, Pedagogical University, 30-084 Kraków, Poland
author
- Institute of Physics, Pedagogical University, 30-084 Kraków, Poland
author
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków, Poland
author
- Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116 Prague, Czech Republic
author
- Institute of Materials Science, Technische Universität Darmstadt, 64287 Darmstadt, Germany
References
- [1] Metal Hydrides: Fundamentals and Applications, Eds. M.V.C. Sastri, B. Viswanathan, S. Srinivasa Murthy, Narosa Publ. House, New Delhi 1998
- [2] Handbook of Hydrogen Storage: New Materials for Future Energy Storage, Ed. M. Hirscher, Wiley-VCH, 2010, doi: 10.1002/9783527629800
- [3] S. Orimo, H. Fujii, Appl. Phys. A 72, 167 (2001), doi: 10.1007/s003390100771
- [4] M. Zhu, C.H. Pene, L.Z. Ouyang, Y.Q. Tong, J. Alloys Comp. 426, 316 (2006), doi: 10.1016/j.jallcom.2006.01.078
- [5] W.Y. Li, C. Li, H. Ma, J. Chen, J. Am. Chem. Soc. 129, 6710 (2007), doi: 10.1021/ja071323z
- [6] A. Brudnik, M. Bucko, M. Radecka, A. Trenczek-Zajac, K. Zakrzewska, Vacuum 82, 936 (2008) and references therein, doi: 10.1016/j.vacuum.2008.01.020
- [7] K. Drogowska, Z. Tarnawski, A. Brudnik, E. Kusior, M. Sokołowski, K. Zakrzewska, A. Reszka, N.-T.H. Kim-Ngan, A.G. Balogh, Mater. Res. Bull. 47, 296 (2012), doi: 10.1016/j.ssi.2013.01.009
- [8] N.-T.H. Kim-Ngan, A.G. Balogh, J.D. Meyer, J. Brötz, S. Hummelt, M. Zając, T. Ślęzak, J. Korecki, Surf. Sci. 602, 2358 (2008), doi: 10.1016/j.susc.2008.04.036
- [9] N.-T.H. Kim-Ngan, A.G. Balogh, J.D. Meyer, J. Brötz, M. Zając, T. Ślęzak, J. Korecki, Surf. Sci. 603, 1175 (2009), doi: 10.1016/j.susc.2009.02.028
- [10] A. Fujishima, K. Honda, Nature 238, 37 (1972), doi: 10.1038/238037a0
- [11] A. Fujishima, T.N. Rao, D.A. Tryk, J. Photochem. Photobiol. C Photochem. Rev. 1, 1 (2000), doi: 10.1016/S1389-5567(00)00002-2
- [12] A.L. Linsebigler, G. Lu, J.T. Yates Jr., Chem. Rev. 95, 735 (1995), doi: 10.1021/cr00035a013
- [13] M. Grätzel, Nature 414, 338 (2001) and references therein, doi: 10.1038/35104607
- [14] O.K. Varghese, D. Gong, M. Paulose, K.G. Ong, C.A. Grimes, Sens. Actuat. B 93, 338 (2003), doi: 10.1016/S0925-4005(03)00222-3
- [15] A. Fujishima, X. Zhang, D.A. Tryk, Surf. Sci. Rep. 63, 515 (2008), doi: 10.1016/j.surfrep.2008.10.001
- [16] M.A. Henderson, Surf. Sci. Rep. 66, 185 (2011), doi: 10.1016/j.surfrep.2011.01.001
- [17] M-I. Baraton, The Open Nanosci. J. 5, 64 (2011), doi: 10.2174/1874140101105010064
- [18] A. Fujishima, X. Zhang, D.A. Tryk, Int. J. Hydrogen En. 32, 2664 (2007), doi: 10.1016/j.ijhydene.2006.09.009
- [19] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001), doi: 10.1126/science.1061051
- [20] L.R. Sheppard, T. Bak, J. Nowotny, M.K. Nowotny, Int. J. Hydrogen En. 32, 2660 (2007), doi: 10.1016/j.ijhydene.2006.09.008
- [21] M.M. Islam, T. Bredow, A. Gerson, Phys. Rev. B 76, 045217 (2007), doi: 10.1103/PhysRevB.76.045217
- [22] K. Hashimoto, H. Irie, A. Fujishima, Jap. J. Appl. Phys. 44, 8269 (2005) http://jsap.or.jp/jsapi/Pdf/Number14/04_JJAP-IRP.pdf
- [23] B. Murphy, P.R.F. Barnes, L.K. Randeniya, I.C. Plumb, I.E. Grey, M.D. Horne, J.A. Glasscock, Int. J. Hydrogen En. 31, 1999 (2006), doi: 10.1016/j.ijhydene.2006.01.014
- [24] J. Nowotny, T. Bąk, M.K. Nowotny, L.R. Sheppard, Int. J. Hydrogen En. 32, 2609 (2007), doi: 10.1016/j.ijhydene.2006.09.004
- [25] S.-H. Lim, J. Luo, Z. Zhong, W. Ji, J. Lin, Inorg. Chem. 44, 4124 (2005), doi: 10.1021/ic0501723
- [26] P. Pillai, K.S. Raja, M. Misra, J. Power Sources 161, 524 (2006), doi: 10.1016/j.jpowsour.2006.03.088
- [27] M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. En. Rev. 11, 401 (2007), doi: 10.1016/j.rser.2005.01.009
- [28] X. Hu, G. Li, J.C. Yu, Langmuir 26, 3031 (2010), doi: 10.1021/la902142b
- [29] D.V. Bavykin, A.A. Lapkin, P.K. Plucinski, J.M. Friedrich, F.C. Walsh, J. Phys. Chem. B 109, 19422 (2005), doi: 10.1021/jp0536394
- [30] Z. Li, D. Ding, C. Ning, Nanoscale Res. Lett. 8, 25 (2013), doi: 10.1186/1556-276X-8-25
- [31] Z. Li, D. Ding, Q. Liu, C. Ning, Sensors 13, 8393 (2013), doi: 10.3390/s130708393
- [32] Z. Tarnawski, N.-T.H. Kim-Ngan, K. Zakrzewska, K. Drogowska, A. Brudnik, A.G. Balogh, R. Kužel, L. Havela, V. Sechovsky, Adv. Nat. Sci. Nanosci. Nanotechnol. 4, 025004 (2013), doi: 10.1088/2043-6262/4/2/025004
- [33] K. Drogowska, S. Flege, C. Schmitt, D. Rogalla, H.-W. Becker, N.-T.H. Kim-Ngan, A. Brudnik, Z. Tarnawski, K. Zakrzewska, M. Marszalek, A.G. Balogh, Adv. Mater. Sci. Eng. 2012, 269603 (2012), doi: 10.1155/2012/269603
- [34] P. Rosaiah, O.M. Hussain, Adv. Nanomater. Nanotechnol. Springer Proc. Phys. 143, 485 (2013), doi: 10.1007/978-3-642-34216-5_48
- [35] L.T. Zhang, J. Song, Q.F. Dong, S.T. Wu, Adv. Mater. Res. 79-82, 931 (2009), doi: 10.4028/www.scientific.net/AMR.79-82.931
- [36] A. Talledo, H. Valdivia, C. Benndorf, J. Vac. Sci. Technol. A 21, 1494 (2003), doi: 10.1116/1.1586282
- [37] D. Honicke, J. Xu, J. Phys. Chem. 92, 4699 (1988), doi: 10.1021/j100327a028
- [38] Y.C. Xie, Y.Q. Tang, Adv. Catal. 37, 1 (1990)
- [39] See e.g. G. Centi, Appl. Catal. A General 147, 267 (1996)
- [40] N.R. Mlyuka, G.A. Niklasson, C.G. Granqvist, Solar Energy Mater. Solar Cells 93, 1685 (2009), doi: 10.1016/j.solmat.2009.03.021
- [41] Z. Tarnawski, K. Zakrzewska, N.-T.H. Kim-Ngan, M. Krupska, S. Sowa, K. Drogowska, L. Havela, A.G. Balogh, Adv. Nat. Sci. Nanosci. Nanotechnol. 6, 013002 (2015), doi: 10.1088/2043-6262/6/1/013002
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n334kz