PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 423-430
Article title

Growth and Characterization of Non-Linear Optical Single Crystal: L-cysteine Hydrochloride Monohydrate

Content
Title variants
Languages of publication
EN
Abstracts
EN
Nonlinear optical single crystals of L-cysteine hydrochloride monohydrate (LCB) were grown by slow evaporation technique. Single crystal X-ray diffraction analysis revealed the crystal system and helped to determine lattice parameter values. Powder X-ray diffraction analyses were carried out and the diffraction patterns were indexed. The optical properties of the crystals were determined using UV-visible spectroscopy. Optical constants such as refractive index, extinction coefficient and electric susceptibility were determined from UV-visible spectroscopy. The Fourier transform infrared studies confirmed the various functional groups present in the grown crystal. The mechanical behaviour of the grown crystals was studied using Vicker's microhardness tester. The thermal analysis confirmed that the crystal was stable up to 108.7°C. The dielectric constant and the dielectric loss measurements were carried out for different temperatures and frequencies. Second harmonic generation of LCB crystal was investigated by the Kurtz powder technique.
Keywords
EN
Publisher

Year
Volume
128
Issue
3
Pages
423-430
Physical description
Dates
published
2015-09
received
2015-01-28
(unknown)
2015-09-25
Contributors
author
  • Department of Physics, Sathyabama University, Tamilnadu-600 119, India
  • Department of Physics, SRR Engineering College, Tamilnadu-603 103, India
  • Department of Physics, Sathyabama University, Tamilnadu-600 119, India
author
  • Department of Chemistry, Pachaiyappa's College, Tamilnadu-600 030, India
author
  • Department of Physics, Justice Basheer Ahmed Sayeed College for Women, Chennai 600018, India
author
  • Department of Physics, AMET University, Chennai 603 112, India
References
  • [1] J.L. Bredas, C. Adant, P. Tackx, A. Persoons, Chem. Rev. 94, 243 (1994), doi: 10.1021/cr00025a008
  • [2] F. Zernike, J.E. Midwinter, Applied Nonlinear Optics, Wiley, New York 1973, doi: 10.1002/pi.4990250317
  • [3] N. Prasad David, J. Williams, Introduction to Nonlinear Optical Effect in Molecules and Polymers, Wiley, New York 1991
  • [4] D.F. Eaton, Nonlin. Opt. Mater. Sci. 253, 281 (1991), doi: 10.1126/science.253.5017.281
  • [5] P. Tanusri, K. Tanusree, B. Gabriele, Lara Rigi, Cryst. Growth Des. 3, 13 (2003), doi: 10.1021/cg025583y
  • [6] J.C. Brice, Crystal Growth Processes, Wiley, New York 1986, doi: 10.1002/crat.2170220103
  • [7] J.C. Brice, The Growth of Crystals from Liquids, Wiley, New York 1972
  • [8] R.A. Laudise, The Growth of Single Crystals, Prentice Hall, Eaglewood Cliffs (NJ) 1970, doi: 10.1002/crat.19720070143
  • [9] W.D. Lawson, S. Neilson,Preparation of Single Crystals, Butterworths, London 1958, doi: 10.1002/ange.19610731325
  • [10] C. Chuangtian, W. Yicheng, L. Rukang, J. Cryst. Growth 99, 790 (1990), doi: 10.1016/S0022-0248(08)80028-0
  • [11] P. Becker, Adv. Mater. 10, 979 (1998), doi: 10.1002/(SICI)1521-4095(199809)10:13%3C979::AID-ADMA979%3E3.0.CO;2-N
  • [12] S. Stella Mary, S. Shahi Kirupavathy, P. Mythili, R. Gopalakrishnan, J. Spectrosc. 29, 1311 (2008), doi: 10.1016/j.saa.2008.04.021
  • [13] G. Pasupathi, P. Philominathan, Int. J. Electron. Eng. Res. 2, 79 (2010)
  • [14] C. Ramachandra Raja, G. Gokila, A. Antony Joseph, Spectrochim. Acta A 72, 753 (2009), doi: 10.1016/j.saa.2008.11.030
  • [15] S.A. Martin Britto Dhas, S. Natarajan, Optic Commun. 281, 457 (2008), doi: 10.1016/j.optcom.2007.09.049
  • [16] M. Loganayaki, P. Murugakoothan, Asian J. Chem. 23, 5085 (2011)
  • [17] P.V. Prasad, T.K. Visweswara Rao, K. Ramanchandra Rao, C. Satya Kamal, T. Samuel, J. Spectrochim Acta A Mol Biomol Spectrosc. 136, 1950 (2014), doi: 10.1016/j.saa.2014.10.115
  • [18] K. Selvaraju, R. Valluvan, K. Kirubavathi, S. Kumararaman, Opt. Commun. 269, 230 (2007), doi: 10.1016/j.optcom.2006.07.075
  • [19] G. Bhagavannarayana, P. Rajesh, P. Ramasamy, J. Appl. Cryst. 43, 1372 (2010), doi: 10.1107/S0021889810033649
  • [20] S. Suresh, Optik-Int. J. Light Electron Opt. 125, 950 (2014), doi: 10.1016/j.ijleo.2013.07.131
  • [21] S. Suresh, Optik-Int. J. Light Electron Opt. 125, 1223 (2014), doi: 10.1016/j.ijleo.2013.07.154
  • [22] S. Suresh, D. Arivuoli, J. Optoelectron. Biomed. Mater. 3, 63 (2011)
  • [23] P. Koteeswari, S. Suresh, J. Mater. 2014, 362678 (2014), doi: 10.1155/2014/362678
  • [24] P. Koteeswari, S. Suresh, P. Mani, J. Minerals Mater. Character. Eng. 11, 813 (2012), doi: 10.4236/jmmce.2012.118071
  • [25] S. Suresh, Am. J. Opt. Photon. 2, 24 (2014), doi: 10.11648/j.ajop.20140203.11
  • [26] V. Gupta, A. Mansingh, J. Appl. Phys. 80, 1063 (1996), doi: 10.1063/1.362842
  • [27] A. Lucarelli, S. Lupi, P. Calvani, P. Maselli, G. De Marzi, P. Roy, N.L. Saini, A. Bianconi, T. Ito, K. Oka, Phys. Rev. B 65, 054511 (2002), doi: 10.1103/PhysRevB.65.054511
  • [28] E.I. Ugwu, A.S. Olayinka, F.I. Olabode, J. Eng. Appl. Sci. 4, 126 (2009)
  • [29] U. Mizutani, Introduction to the Electron Theory of Metals, Cambridge University Press, Cambridge 2004, p. 320
  • [30] P. Sharma, S.C. Katya, J. Phys. D Appl. Phys. 40, 2115 (2007), doi: 10.1088/0022-3727/40/7/038
  • [31] S. Rajathi, K. Kirubavathi, K. Selvaraju, Arab. J. Chem. (2015), in press, doi: 10.1016/j.arabjc.11.057
  • [32] V. Revathi, V. Rajendran, Int. J. Recent Sci. Res. 4, 1332 (2013)
  • [33] S.D. Ross, J. Mol. Spectrosc. 29, 131 (1969), doi: 10.1016/0022-2852(69)90093-9
  • [34] G.D. Chryssikos, J. Raman Spectrosc. 22, 645 (1991), doi: 10.1002/jrs.1250221109
  • [35] G.D. Chryssikos, J.A. Kapoutsis, A.P. Patsis, E.I. Kamitsos, Spectrochim. Acta A Mol. Spectrosc. 47, 1117 (1991), doi: 10.1016/0584-8539(91)80043-I
  • [36] N.B. Clothup, Introduction to Infrared and Raman Spectroscopy, 2nd ed., Academic Press, London 1975
  • [37] G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules, Van Nostrand, New York 1945
  • [38] S. Suresh, R. Varatharajan, Int. J. Phys. Sci. 8, 1892 (2013), doi: 10.5897/IJPS2013.4052
  • [39] E.M. Onitsch, Microscope 95, 12 (1950)
  • [40] S. Suresh, J. Optoelectron. Adv. Mater. 6, 1174 (2012)
  • [41] S. Suresh, A. Ramanand, P. Mani, K. Murthyanand, J. Optoelectron. Biomed. Mater. 1, 129 (2010)
  • [42] W.A. Wooster, Rep. Prog. Phys. 16, 62 (1953), doi: 10.1088/0034-4885/16/1/302
  • [43] V. Gupta, K.K. Bamzai, P.N. Kotru, B.M. Wanklyn, Mater. Chem. Phys. 89, 64 (2005), doi: 10.1016/j.matchemphys.2004.08.027
  • [44] S. Anbukumar, S. Vasudevan, P. Ramasamy, Mater. Chem. Phys. 16, 125 (1987), doi: 10.1016/0254-0584(87)90024-1
  • [45] G. Anandhababu, G. Bhagavannarayana, P. Ramasamy, J. Cryst. Growth 310, 1228 (2008), doi: 10.1016/j.jcrysgro.2007.12.024
  • [46] T. Uma Devia, N. Lawrence, R. Rameshbabu, S. Selvanayagam, H. Stoeckli-Evans, G. Bhagavannarayana, K. Ramamurthi, J. Miner. Mater. Character. Eng. 9, 495 (2010), doi: 10.4236/jmmce.2010.95035
  • [47] S. Sagadevan, Optik-Int. J. Light Electron Opt. 125, 6746 (2014), doi: 10.1016/j.ijleo.2014.08.059
  • [48] S. Suresh, A. Ramanand, D. Jayaraman, P. Mani, J. Optoelectron Adv. Mater. 4, 1763 (2010)
  • [49] S. Sagadevan, P. Murugasen, J. Crystallizat Proc. Technol. 4, 99 2014, doi: 10.4236/jcpt.2014.42013
  • [50] A. Firdous, I. Quasim, M.M. Ahmad, P.N. Kotru, Bull. Mater. Sci. 33, 377 (2010), doi: 10.1007/s12034-010-0057-1
  • [51] S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798 (1968), doi: 10.1063/1.1656857
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n333kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.