Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 373-376

Article title

Phase Transition, Electronic and Magnetic Properties of CsN and RbN Alloys under Pressure

Content

Title variants

Languages of publication

EN

Abstracts

EN
Using full-potential local-orbital minimum-basis method within density functional theory, we study the phase transition, electronic and magnetic properties of CsN and RbN alloys under external pressure. Concerning the phase transition, we consider three possible crystal structures, including caesium chloride (CsCl), rock salt (RS) and zinc blende (ZB) ones. Calculations of enthalpy exhibit that a pressure-induced phase transition occurs between the three structures, and the phase transitions are difficult to be distinguished under ambient condition (P=0 GPa). As the further increase of pressure, they can be specified clearly. In addition, the electronic calculations indicate that both alloys are half-metallic ferromagnets with a total magnetic moment of 2.000 μ_{B}, which is promising for fabricating spin injection devices. Finally, we discuss the electronic and magnetic properties of CsN and RbN under external pressure. A pressure-induced delocalized electronic states and magnetic phase transition are observed in RbN and CsN alloys.

Keywords

EN

Contributors

author
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
author
  • Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, P.R. China
author
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
author
  • Department of Physics, Lanzhou University, Lanzhou 730000, P.R. China

References

  • [1] R.A. de Groot, F.M. Mueller, G.P. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983), doi: 10.1103/physrevlett.50.2024
  • [2] H. Ohno, Science 281, 951 (1998), doi: 10.1126/science.281.5379.951
  • [3] T. Graf, C. Felser, S.S.P. Parkin,Prog. Solid State Chem. 39, 1 (2011), doi: 10.1016/j.progsolidstchem.2011.02.001
  • [4] K. Schwarz, J. Phys. F Met. Phys. 16, L211 (1986), doi: 10.1088/0305-4608/16/9/002
  • [5] M.A. Korotin, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. Lett. 80, 4305 (1998), doi: 10.1103/physrevlett.80.4305
  • [6] A. Yanase, K. Siratori, J. Phys. Soc. Jpn. 53, 312 (1984), doi: 10.1143/jpsj.53.312
  • [7] S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano, M. Matsui, Appl. Phys. Lett. 80, 823 (2002), doi: 10.1063/1.1446995
  • [8] Y.P. Liu, S.H. Chen, J.C. Tung, Y.K. Wang,Solid State Commun. 152, 968 (2012), doi: 10.1016/j.ssc.2012.01.051
  • [9] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998), doi: 10.1038/27167
  • [10] G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, Y.X. Li, G. Xiao, G.H. Wu, Phys. Rev. B 77, 014424 (2008), doi: 10.1103/physrevb.77.014424
  • [11] K. Özdog̃an, E. Şaşıog̃lu, B. Aktaş, I. Galanakis, Phys. Rev. B 74, 172412 (2006), doi: 10.1103/physrevb.74.172412
  • [12] J. Li, G.F. Chen, H.Y. Liu, Y.X. Li, J.F. Li, X.W. Xu, J. Magn. Magn. Mater. 322, 1 (2010), doi: 10.1016/j.jmmm.2009.07.048
  • [13] N. Kervan, S. Kervan, Intermetallics 24, 56 (2012), doi: 10.1016/j.intermet.2012.01.030
  • [14] A. Birsan, P. Palade, V. Kuncser, Solid State Commun. 152, 2147 (2012), doi: 10.1016/j.ssc.2012.09.013
  • [15] H.Z. Luo, G.D. Liu, F.B. Meng, J.Q. Li, E.K. Liu, G.H. Wu, J. Magn. Magn. Mater. 324, 3295 (2012), doi: 10.1016/j.jmmm.2012.05.033
  • [16] H.M. Huang, S.J. Luo, K.L. Yao, J. Magn. Magn. Mater. 324, 2560 (2012), doi: 10.1016/j.jmmm.2012.03.047
  • [17] X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, X.R. Hu, Intermetallics 29, 86 (2012), doi: 10.1016/j.intermet.2012.05002
  • [18] L. Kronik, M. Jain, J.R. Chelikowsky, Phys. Rev. B 66, 041203(R) (2002), doi: 10.1103/physrevb.66.041203
  • [19] G. Liu, B.G. Liu, Phys. Rev. B 73, 045209 (2006), doi: 10.1103/physrevb.73.045209
  • [20] I. Galanakis, P. Mavropoulos, Phys. Rev. B 67, 104417 (2003), doi: 10.1103/physrevb.67.104417
  • [21] B.G. Liu, Phys. Rev. B 67, 172411 (2003), doi: 11.1103/physrevb.67.172411
  • [22] Z.Y. Chen, B. Xu, G.Y. Gao, J. Magn. Magn. Mater. 347, 14 (2013), doi: 10.1016/j.jmmm.2013.07.047
  • [23] W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003), doi: 10.1103/physrevlett.91.037204
  • [24] A. Lakdja, H. Rozale, A. Chahed, Comp. Mater. Sci. 67, 287 (2013), doi: 10.1016/j.commatsci.2012.09.015
  • [25] X.P. Wei, Y.D. Chu, X.W. Sun, Y. E, J.B. Deng, Y.Z. Xing, J. Magn. Magn. Mater. 363, 55 (2014), doi: 10.1016/j.jmmm.2014.03.063
  • [26] A. Lakdja, Comp. Mater. Sci. 89, 1 (2013), doi: 10.1016/j.commatsci.2014.03.027
  • [27] K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999), doi: 10.1103/physrevb.59.1743
  • [28] I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999), doi: 10.1103/physrevb.60.14035
  • [29] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/physrevlett.77.3865
  • [30] F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York 1967, doi: 10.2307/2371405
  • [31] Ph. Kurz, G. Bihlmayer, S. Blügel, J. Phys. Condens. Matter 14, 6353 (2002), doi: 10.1088/0953-8984/14/25/305
  • [32] K. Zberecki, L. Adamowicz, M. Wierzbicki, Phys. Status Solidi B 246, 2270 (2009), doi: 10.1002/pssb.200945121

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n324kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.