PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 373-376
Article title

Phase Transition, Electronic and Magnetic Properties of CsN and RbN Alloys under Pressure

Content
Title variants
Languages of publication
EN
Abstracts
EN
Using full-potential local-orbital minimum-basis method within density functional theory, we study the phase transition, electronic and magnetic properties of CsN and RbN alloys under external pressure. Concerning the phase transition, we consider three possible crystal structures, including caesium chloride (CsCl), rock salt (RS) and zinc blende (ZB) ones. Calculations of enthalpy exhibit that a pressure-induced phase transition occurs between the three structures, and the phase transitions are difficult to be distinguished under ambient condition (P=0 GPa). As the further increase of pressure, they can be specified clearly. In addition, the electronic calculations indicate that both alloys are half-metallic ferromagnets with a total magnetic moment of 2.000 μ_{B}, which is promising for fabricating spin injection devices. Finally, we discuss the electronic and magnetic properties of CsN and RbN under external pressure. A pressure-induced delocalized electronic states and magnetic phase transition are observed in RbN and CsN alloys.
Keywords
EN
Publisher

Year
Volume
128
Issue
3
Pages
373-376
Physical description
Dates
published
2015-09
received
2015-01-28
(unknown)
2015-07-06
Contributors
author
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
author
  • Institute of Modern Physics, Chinese Academy of Sciences, 730000, Lanzhou, P.R. China
author
  • The School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, P.R. China
author
  • Department of Physics, Lanzhou University, Lanzhou 730000, P.R. China
References
  • [1] R.A. de Groot, F.M. Mueller, G.P. van Engen, K.H.J. Buschow, Phys. Rev. Lett. 50, 2024 (1983), doi: 10.1103/physrevlett.50.2024
  • [2] H. Ohno, Science 281, 951 (1998), doi: 10.1126/science.281.5379.951
  • [3] T. Graf, C. Felser, S.S.P. Parkin,Prog. Solid State Chem. 39, 1 (2011), doi: 10.1016/j.progsolidstchem.2011.02.001
  • [4] K. Schwarz, J. Phys. F Met. Phys. 16, L211 (1986), doi: 10.1088/0305-4608/16/9/002
  • [5] M.A. Korotin, V.I. Anisimov, D.I. Khomskii, G.A. Sawatzky, Phys. Rev. Lett. 80, 4305 (1998), doi: 10.1103/physrevlett.80.4305
  • [6] A. Yanase, K. Siratori, J. Phys. Soc. Jpn. 53, 312 (1984), doi: 10.1143/jpsj.53.312
  • [7] S. Soeya, J. Hayakawa, H. Takahashi, K. Ito, C. Yamamoto, A. Kida, H. Asano, M. Matsui, Appl. Phys. Lett. 80, 823 (2002), doi: 10.1063/1.1446995
  • [8] Y.P. Liu, S.H. Chen, J.C. Tung, Y.K. Wang,Solid State Commun. 152, 968 (2012), doi: 10.1016/j.ssc.2012.01.051
  • [9] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Terakura, Y. Tokura, Nature 395, 677 (1998), doi: 10.1038/27167
  • [10] G.D. Liu, X.F. Dai, H.Y. Liu, J.L. Chen, Y.X. Li, G. Xiao, G.H. Wu, Phys. Rev. B 77, 014424 (2008), doi: 10.1103/physrevb.77.014424
  • [11] K. Özdog̃an, E. Şaşıog̃lu, B. Aktaş, I. Galanakis, Phys. Rev. B 74, 172412 (2006), doi: 10.1103/physrevb.74.172412
  • [12] J. Li, G.F. Chen, H.Y. Liu, Y.X. Li, J.F. Li, X.W. Xu, J. Magn. Magn. Mater. 322, 1 (2010), doi: 10.1016/j.jmmm.2009.07.048
  • [13] N. Kervan, S. Kervan, Intermetallics 24, 56 (2012), doi: 10.1016/j.intermet.2012.01.030
  • [14] A. Birsan, P. Palade, V. Kuncser, Solid State Commun. 152, 2147 (2012), doi: 10.1016/j.ssc.2012.09.013
  • [15] H.Z. Luo, G.D. Liu, F.B. Meng, J.Q. Li, E.K. Liu, G.H. Wu, J. Magn. Magn. Mater. 324, 3295 (2012), doi: 10.1016/j.jmmm.2012.05.033
  • [16] H.M. Huang, S.J. Luo, K.L. Yao, J. Magn. Magn. Mater. 324, 2560 (2012), doi: 10.1016/j.jmmm.2012.03.047
  • [17] X.P. Wei, J.B. Deng, G.Y. Mao, S.B. Chu, X.R. Hu, Intermetallics 29, 86 (2012), doi: 10.1016/j.intermet.2012.05002
  • [18] L. Kronik, M. Jain, J.R. Chelikowsky, Phys. Rev. B 66, 041203(R) (2002), doi: 10.1103/physrevb.66.041203
  • [19] G. Liu, B.G. Liu, Phys. Rev. B 73, 045209 (2006), doi: 10.1103/physrevb.73.045209
  • [20] I. Galanakis, P. Mavropoulos, Phys. Rev. B 67, 104417 (2003), doi: 10.1103/physrevb.67.104417
  • [21] B.G. Liu, Phys. Rev. B 67, 172411 (2003), doi: 11.1103/physrevb.67.172411
  • [22] Z.Y. Chen, B. Xu, G.Y. Gao, J. Magn. Magn. Mater. 347, 14 (2013), doi: 10.1016/j.jmmm.2013.07.047
  • [23] W.H. Xie, Y.Q. Xu, B.G. Liu, D.G. Pettifor, Phys. Rev. Lett. 91, 037204 (2003), doi: 10.1103/physrevlett.91.037204
  • [24] A. Lakdja, H. Rozale, A. Chahed, Comp. Mater. Sci. 67, 287 (2013), doi: 10.1016/j.commatsci.2012.09.015
  • [25] X.P. Wei, Y.D. Chu, X.W. Sun, Y. E, J.B. Deng, Y.Z. Xing, J. Magn. Magn. Mater. 363, 55 (2014), doi: 10.1016/j.jmmm.2014.03.063
  • [26] A. Lakdja, Comp. Mater. Sci. 89, 1 (2013), doi: 10.1016/j.commatsci.2014.03.027
  • [27] K. Koepernik, H. Eschrig, Phys. Rev. B 59, 1743 (1999), doi: 10.1103/physrevb.59.1743
  • [28] I. Opahle, K. Koepernik, H. Eschrig, Phys. Rev. B 60, 14035 (1999), doi: 10.1103/physrevb.60.14035
  • [29] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996), doi: 10.1103/physrevlett.77.3865
  • [30] F.D. Murnaghan, Finite Deformation of an Elastic Solid, Dover, New York 1967, doi: 10.2307/2371405
  • [31] Ph. Kurz, G. Bihlmayer, S. Blügel, J. Phys. Condens. Matter 14, 6353 (2002), doi: 10.1088/0953-8984/14/25/305
  • [32] K. Zberecki, L. Adamowicz, M. Wierzbicki, Phys. Status Solidi B 246, 2270 (2009), doi: 10.1002/pssb.200945121
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n324kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.