Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The theoretical description of electronic tunneling transport through the three-well nanostructure (In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As), being an expanded active region of quantum cascade detector, is presented. Using the solution of the Schrödinger equation, the dynamic conductivity caused by quantum transitions due to the interaction of electrons with electromagnetic field and phonons is calculated. Within the Green functions approach, the electron spectrum, renormalized due to the interaction with confined optical and interface phonons is obtained at cryogenic and room temperatures. The role of different mechanisms of electron-phonon interaction in the formation of temperature shifts, decay rates of electron states and electromagnetic field absorption bands is investigated. It is shown that independently of the temperature, the contribution produced by interface phonons into renormalized electron spectrum is several times bigger than that of confined phonons. However, the experimentally observed long-wave shift and broadening of absorption band at higher temperatures is, mainly, caused by the decreasing heights of resonant tunneling structure potential barriers.
Discipline
Journal
Year
Volume
Issue
Pages
343-352
Physical description
Dates
published
2015-09
received
2015-02-24
(unknown)
2015-06-05
Contributors
author
- Chernivtsi National University, Kotsiybynsky str. 2, 58012, Chernivtsi, Ukraine
author
- Chernivtsi National University, Kotsiybynsky str. 2, 58012, Chernivtsi, Ukraine
author
- Chernivtsi National University, Kotsiybynsky str. 2, 58012, Chernivtsi, Ukraine
author
- Chernivtsi National University, Kotsiybynsky str. 2, 58012, Chernivtsi, Ukraine
References
- [1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 533 (1994), doi: 10.1126/science.264.5158.553
- [2] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001), doi: 10.1088/0034-4885/64/11/204
- [3] D. Hofstetter, M. Graf, T. Aellen, J. Faist, L. Hvozdara, S. Blaser, Appl. Phys. Lett. 89, 061119 (2006), doi: 10.1063/1.2269408
- [4] M. Graf, N. Hoyler, M. Giovannini, J. Faist, D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006), doi: 10.1063/1.2210088
- [5] S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 94, 131105 (2009), doi: 10.1063/1.3114418
- [6] A. Bismuto, M. Beck, J. Faist, Appl. Phys. Lett. 98, 191104 (2011), doi: 10.1063/1.3589355
- [7] L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Opt. Lett. 36, 3109 (2011), doi: 10.1364/OL.36.003109
- [8] H. Schneider, H.C. Liu, S. Winnerl, O. Drachenko, M. Helm, J. Faist, Appl. Phys. Lett. 93, 101114 (2008), doi: 10.1063/1.2977864
- [9] A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, V. Berger, Appl. Phys. Lett. 96, 172101 (2010), doi: 10.1063/1.3409139
- [10] S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 100, 181103 (2012), doi: 10.1063/1.4707904
- [11] C. Jirauschek, T. Kubis, Appl. Phys. Rev. 1, 011307 (2014), doi: 10.1063/1.4863665
- [12] M. Lindskog, J.M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, A. Wacker, Appl. Phys. Lett. 105, 103106 (2014), doi: 10.1063/1.4895123
- [13] J. Faist, Quantum Cascade Lasers, Oxford University Press, Oxford 2013
- [14] R. Terazzi, J. Faist, New J. Phys. 12, 033045 (2010), doi: 10.1088/1367-2630/12/3/033045
- [15] F.R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H.E. Beere, D.A. Ritchie, E. Linfield, A.G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, D. Hofstetter, J. Quantum Electron. 45, 1039 (2009), doi: 10.1109/JQE.2009.2017929
- [16] R. Betancourt-Riera, R. Rosas, I. Marín-Enriquez, R. Riera, J.L. Marín, J. Phys. Condens. Matter 17, 4451 (2005), doi: 10.1088/0953-8984/17/28/005
- [17] N.V. Tkach, Yu.A. Seti, Low Temp. Phys. 35, 556 (2009), doi: 10.1063/1.3170931
- [18] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Condens. Matter Phys. 14, 43702 (2011), doi: 10.5488/CMP.14.43702
- [19] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Acta Phys. Pol. A 124, 94 (2013), doi: 10.12693/APhysPolA.124.94
- [20] M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, Rom. Rep. Phys. 65, 1443 (2013)
- [21] E. Saczuk, J.Z. Kaminski, Phys. Status Solidi B 240, 603 (2003), doi: 10.1002/pssb.200301898
- [22] F.H.M. Faisal, J.Z. Kaminski, E. Saczuk, Phys. Rev. A 72, 023412 (2005), doi: 10.1103/PhysRevA.72.023412
- [23] N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989), doi: 10.1103/PhysRevB.40.6175
- [24] J.-J. Shi, B.C. Sanders, S.-H. Pan, Eur. Phys. J. B 4, 113 (1998), doi: 10.1007/s100510050357
- [25] Z.W. Yan, X.X. Liang, Int. J. Mod. Phys. B 15, 3539 (2001), doi: 10.1142/S0217979201007804
- [26] Z.W. Yan, S.L. Ban, X.X. Liang, Int. J. Mod. Phys. B 17, 6085 (2003), doi: 10.1142/S0217979203023653
- [27] B.H. Wu, J.C. Cao, G.Q. Xia, H.C. Liu, Eur. Phys. J. B 33, 9 (2003), doi: 10.1140/epjb/e2003-00135-2
- [28] J.G. Zhu, S.L. Ban, Eur. Phys. J. B 85, 140 (2012), doi: 10.1140/epjb/e2012-20981-9
- [29] M.A. Stroscio, M. Dutta, Phonons in Nanostructures, Cambridge University Press, Cambridge 2001
- [30] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3, 3rd ed., Pergamon Press, London 1977
- [31] D.F. Nelson, R.C. Miller, D.A. Kleinman, Phys. Rev. B 35, 7770(R) (1987), doi: 10.1103/PhysRevB.35.7770
- [32] A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice Hall, Englewood Cliffs 1963
- [33] G.H. Davies, The Physics of Low-Dimensional Semiconductor, Cambridge University Press, Cambridge 1998
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n320kz