PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 343-352
Article title

Dynamic Conductivity of Electrons and Electron-Phonon Interaction in Open Three-Well Nanostructures

Content
Title variants
Languages of publication
EN
Abstracts
EN
The theoretical description of electronic tunneling transport through the three-well nanostructure (In_{0.53}Ga_{0.47}As/In_{0.52}Al_{0.48}As), being an expanded active region of quantum cascade detector, is presented. Using the solution of the Schrödinger equation, the dynamic conductivity caused by quantum transitions due to the interaction of electrons with electromagnetic field and phonons is calculated. Within the Green functions approach, the electron spectrum, renormalized due to the interaction with confined optical and interface phonons is obtained at cryogenic and room temperatures. The role of different mechanisms of electron-phonon interaction in the formation of temperature shifts, decay rates of electron states and electromagnetic field absorption bands is investigated. It is shown that independently of the temperature, the contribution produced by interface phonons into renormalized electron spectrum is several times bigger than that of confined phonons. However, the experimentally observed long-wave shift and broadening of absorption band at higher temperatures is, mainly, caused by the decreasing heights of resonant tunneling structure potential barriers.
Keywords
EN
Year
Volume
128
Issue
3
Pages
343-352
Physical description
Dates
published
2015-09
received
2015-02-24
(unknown)
2015-06-05
References
  • [1] J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 533 (1994), doi: 10.1126/science.264.5158.553
  • [2] C. Gmachl, F. Capasso, D.L. Sivco, A.Y. Cho, Rep. Prog. Phys. 64, 1533 (2001), doi: 10.1088/0034-4885/64/11/204
  • [3] D. Hofstetter, M. Graf, T. Aellen, J. Faist, L. Hvozdara, S. Blaser, Appl. Phys. Lett. 89, 061119 (2006), doi: 10.1063/1.2269408
  • [4] M. Graf, N. Hoyler, M. Giovannini, J. Faist, D. Hofstetter, Appl. Phys. Lett. 88, 241118 (2006), doi: 10.1063/1.2210088
  • [5] S. Kumar, Q. Hu, J.L. Reno, Appl. Phys. Lett. 94, 131105 (2009), doi: 10.1063/1.3114418
  • [6] A. Bismuto, M. Beck, J. Faist, Appl. Phys. Lett. 98, 191104 (2011), doi: 10.1063/1.3589355
  • [7] L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Opt. Lett. 36, 3109 (2011), doi: 10.1364/OL.36.003109
  • [8] H. Schneider, H.C. Liu, S. Winnerl, O. Drachenko, M. Helm, J. Faist, Appl. Phys. Lett. 93, 101114 (2008), doi: 10.1063/1.2977864
  • [9] A. Buffaz, M. Carras, L. Doyennette, A. Nedelcu, X. Marcadet, V. Berger, Appl. Phys. Lett. 96, 172101 (2010), doi: 10.1063/1.3409139
  • [10] S. Sakr, E. Giraud, A. Dussaigne, M. Tchernycheva, N. Grandjean, F.H. Julien, Appl. Phys. Lett. 100, 181103 (2012), doi: 10.1063/1.4707904
  • [11] C. Jirauschek, T. Kubis, Appl. Phys. Rev. 1, 011307 (2014), doi: 10.1063/1.4863665
  • [12] M. Lindskog, J.M. Wolf, V. Trinite, V. Liverini, J. Faist, G. Maisons, M. Carras, R. Aidam, R. Ostendorf, A. Wacker, Appl. Phys. Lett. 105, 103106 (2014), doi: 10.1063/1.4895123
  • [13] J. Faist, Quantum Cascade Lasers, Oxford University Press, Oxford 2013
  • [14] R. Terazzi, J. Faist, New J. Phys. 12, 033045 (2010), doi: 10.1088/1367-2630/12/3/033045
  • [15] F.R. Giorgetta, E. Baumann, M. Graf, Q. Yang, C. Manz, K. Kohler, H.E. Beere, D.A. Ritchie, E. Linfield, A.G. Davies, Y. Fedoryshyn, H. Jackel, M. Fischer, J. Faist, D. Hofstetter, J. Quantum Electron. 45, 1039 (2009), doi: 10.1109/JQE.2009.2017929
  • [16] R. Betancourt-Riera, R. Rosas, I. Marín-Enriquez, R. Riera, J.L. Marín, J. Phys. Condens. Matter 17, 4451 (2005), doi: 10.1088/0953-8984/17/28/005
  • [17] N.V. Tkach, Yu.A. Seti, Low Temp. Phys. 35, 556 (2009), doi: 10.1063/1.3170931
  • [18] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Condens. Matter Phys. 14, 43702 (2011), doi: 10.5488/CMP.14.43702
  • [19] M.V. Tkach, Ju.O. Seti, O.M. Voitsekhivska, Acta Phys. Pol. A 124, 94 (2013), doi: 10.12693/APhysPolA.124.94
  • [20] M.V. Tkach, Ju.O. Seti, I.V. Boyko, O.M. Voitsekhivska, Rom. Rep. Phys. 65, 1443 (2013)
  • [21] E. Saczuk, J.Z. Kaminski, Phys. Status Solidi B 240, 603 (2003), doi: 10.1002/pssb.200301898
  • [22] F.H.M. Faisal, J.Z. Kaminski, E. Saczuk, Phys. Rev. A 72, 023412 (2005), doi: 10.1103/PhysRevA.72.023412
  • [23] N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989), doi: 10.1103/PhysRevB.40.6175
  • [24] J.-J. Shi, B.C. Sanders, S.-H. Pan, Eur. Phys. J. B 4, 113 (1998), doi: 10.1007/s100510050357
  • [25] Z.W. Yan, X.X. Liang, Int. J. Mod. Phys. B 15, 3539 (2001), doi: 10.1142/S0217979201007804
  • [26] Z.W. Yan, S.L. Ban, X.X. Liang, Int. J. Mod. Phys. B 17, 6085 (2003), doi: 10.1142/S0217979203023653
  • [27] B.H. Wu, J.C. Cao, G.Q. Xia, H.C. Liu, Eur. Phys. J. B 33, 9 (2003), doi: 10.1140/epjb/e2003-00135-2
  • [28] J.G. Zhu, S.L. Ban, Eur. Phys. J. B 85, 140 (2012), doi: 10.1140/epjb/e2012-20981-9
  • [29] M.A. Stroscio, M. Dutta, Phonons in Nanostructures, Cambridge University Press, Cambridge 2001
  • [30] L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Vol. 3, 3rd ed., Pergamon Press, London 1977
  • [31] D.F. Nelson, R.C. Miller, D.A. Kleinman, Phys. Rev. B 35, 7770(R) (1987), doi: 10.1103/PhysRevB.35.7770
  • [32] A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinski, Methods of Quantum Field Theory in Statistical Physics, Prentice Hall, Englewood Cliffs 1963
  • [33] G.H. Davies, The Physics of Low-Dimensional Semiconductor, Cambridge University Press, Cambridge 1998
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n320kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.