Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 283-288

Article title

Optical and Electrical Characterization of (002)-Preferentially Oriented n-ZnO/p-Si Heterostructure

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper, preferentially oriented (002) ZnO thin films have been grown on Si (100) and glass substrates using radio frequency magnetron sputtering. The dependence of the quality of the ZnO thin films at different substrate temperatures on the growth is studied. A ZnO thin film with c-axis-oriented würtzite structure is obtained at a growth temperature from 200 to 400°C. X-ray diffraction shows that the full width at half maximum θ -2θ of (002) ZnO/Si is located at approximately 34.42°, which is used to infer the grain size that is found to be 17 nm to 19.7 nm. The FWHM is 9.5° to 8° in rocking curve mode, from which the crystalline quality has been determined. The texture degree demonstrates the improvement in quality with the increase of substrate temperature, which is best at 400°C. The band gap extracted by UV transmittance spectrum has been identified as 3.2 eV at 400°C. The electrical characteristics via C-V and I-V measurements on the basis of the heterojunction thermal emission model confirm the domination of high-density grain boundary layer existing at the interface. The transport currents indicate to the presence of space-charge-limited current and trap-charge-limited current mechanisms.

Keywords

EN

Year

Volume

128

Issue

3

Pages

283-288

Physical description

Dates

published
2015-09
received
2015-01-28
(unknown)
2015-05-05
(unknown)
2015-06-01

Contributors

author
  • Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria
author
  • Department of Physics, Atomic Energy Commission of Syria, P.O. Box 6091, Damascus, Syria

References

  • [1] Z.A. Wang, J.B. Chu, H.B. Zhu, Z. Sun, Y.W. Chen, S.M. Huang, Solid State Electron. 53, 1149 (2009), doi: 10.1016/j.sse.2009.07.006
  • [2] B.Y. Oh, M.C. Jeong, T.H. Moon, W. Lee, J.M. Myoung, J.Y. Hwang, D.S. Seo, J. Appl. Phys. 99, 124505 (2006), doi: 10.1063/1.2206417
  • [3] S.J. Pearton, W.T. Lim, J.S. Wright, L.C. Tien, H.S. Kim, D.P. Norton, H.T. Wang, B.S. Kang, F. Ren, J. Jun, J. Lin, A. Osinsky, J. Electron. Mater. 37, 1426 (2008), doi: 10.1007/s11664-008-0416-5
  • [4] R.L. Hoffman, B.J. Norris, J.F. Wager, Appl. Phys. Lett. 82, 733 (2003), doi: 10.1063/1.1542677
  • [5] J. Zhu, H. Chen, G. Saraf, Z. Duan, Y. Lu, S.T. Hsu, J. Electron. Mater. 37, 1237 (2008), doi: 10.1007/s11664-008-0457-9
  • [6] V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sens. Actuat. B 123, 701 (2007), doi: 10.1016/j.snb.2006.10.003
  • [7] P.K. Basu, P. Battacharyya, N. Saha, H. Saha, S. Basu, Sens. Actuat. B 133, 357 (2008), doi: 10.1016/j.snb.2008.02.035
  • [8] P.P. Sahay, R.K. Nath, Sens. Actuat. B 134, 654 (2008), doi: 10.1016/j.snb.2008.06.006
  • [9] P.S. Cho, K.W. Kim, J.H. Lee, J. Electroceram. 17, 975 (2006), doi: 10.1007/s10832-006-8146-7
  • [10] Z. Bi, J.W. Zhang, X.M. Bian, D. Wang, X. Zhang, W.F. Zhang, X. Hou, J. Electron. Mater. 37, 760 (2008), doi: 10.1007/s11664-007-0329-8
  • [11] M.A. Green, Prog. Photovolt. Res. Appl. 17, 347 (2009), doi: 10.1002/pip.899
  • [12] S. Fay, S. Dubail, U. Kroll, J. Meier, Y. Zeigler, A. Shah, in: Proc. 16th Photovoltaic Solar Energy Conf., Ed. H. Scheer, Taylor and Francis, Glasgow 2000, p. 362
  • [13] K. Kushiya, M. Ohshita, I. Hara, Y. Tanaka, B. Sang, Y. Nagoya, M. Tachiyuki, O.`Yamase, En. Mater. Sol. Cells. 75, 171 (2003), doi: 10.1016/S0927-0248(02)00144-7
  • [14] D.C. Look, Mater. Sci. Eng. B 80, 383 (2001), doi: 10.1016/S0921-5107(00)00604-8
  • [15] A.B. Djurisic, Y. Chan, E.H. Li, Mater. Sci. Eng. R 38, 237 (2002), doi: 10.1016/S0927-796X(02)00063-3
  • [16] S. Bensmaine, L. Le Brizoual, O. Elmazria, B. Assouar, B. Benyoucef, J. Electron Dev. 5, 104 (2007)
  • [17] J.H. Lee, K.H. Ko, B.O. Park, J. Cryst. Growth 247, 119 (2003), doi: 10.1016/S0022-0248(02)01907-3
  • [18] P. Nunes, E. Fortunato, R. Martins, Int. J. Inorg. Mater. 3, 1125 (2001), doi: 10.1016/S1466-6049(01)00113-1
  • [19] S. Rahmane, M.A. Djouadi, M.S. Aida, N. Barreau, B. Abdallah, N. Hadj Zoubir, Thin Solid Films 519, 5 (2010), doi: 10.1016/j.tsf.2010.06.063
  • [20] J.H. Lee, B.O. Park, Thin Solid Films 426, 94 (2003), doi: 10.1016/S0040-6090(03)00014-2
  • [21] V. Musat, B. Teixeira, E. Fortunato, R.C.C. Monteiro, P. Villarinho, Surf. Coat. Technol. 180-181, 659 (2004), doi: 10.1016/j.surfcoat.2003.10.112
  • [22] S. Al-Khawaja, B. Abdallah, S. Abou Shaker, M. Kakhia, Composite Interfaces 22, 221 (2014), doi: 10.1080/15685543.2015.1002259
  • [23] C. Jagadish, J. Peatron, Zinc Oxide Bulk, Thin Films and Nanostructures Processing: Properties and Applications, Elsevier, Amsterdam 2006
  • [24] S. Rahmane, B. Abdallah, A. Soussou, E. Gautron, P.-Y. Jouan, L. Le Brizoual, N. Barreau, A. Soltani, M.A. Djouadi, Phys. Status Solidi. A 1-5, 1604 (2010), doi: 10.1002/pssa.200983776
  • [25] X.Y. Peng, M. Sajjad, J. Chu, B.Q. Yang, P.X. Feng, Appl. Surf. Sci. 257, 4795 (2011), doi: 10.1016/j.apsusc.2010.12.041
  • [26] L.J. Mandalapu, F.X. Xiu, Z. Yang, J.L. Liu, J. Appl. Phys. 102, 023716 (2007), doi: 10.1063/1.2759874
  • [27] F. Chaabouni, M. Abaab, B. Rezig, Superlatt. Microstruct. 39, 171 (2006)., doi: 10.1016/j.spmi.2005.08.070
  • [28] C. Messaoudi, D. Sayah, M. Abd-Lefdil, Phys. Status Solidi A 151, 93 (1995), doi: 10.1002/pssa.2211510110
  • [29] P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98 (1918)
  • [30] A.E. Rakhshani, Appl. Phys. A 92, 413 (2008), doi: 10.1007/s00339-008-4542-y
  • [31] M. Bouderbala, S. Hamzaoui, B. Amrani, A.H. Reshak, M. Adnane, T. Sahraoui, M. Zerdali, Physica B Condens. Matter 403, 3326 (2008), doi: 10.1016/j.physb.2008.04.045
  • [32] H.J. Chang, C.Z. Lu, Y. Wang, C.S. Son, S.I. Kim, Y.H. Kim, I.H. Choi, J. Korean Phys. Soc. 45, 959 (2004)
  • [33] Leanddas Nurdiwijayanto, Bambang Sunendar Purwasasmita, J. Mater. Sci. Eng. 11, 1 (2010)
  • [34] G.G. Valle, P. Hammer, S.H. Pulcinelli, C.V. Santilli, Europ. Ceram. Soc. 24, 1009 (2004), doi: 10.1016/S0955-2219(03)00597-1
  • [35] S.M. Sze, Semiconductor Devices, Physics and Technology, Wiley, USA 1985
  • [36] D.K. Schroder, Semiconductor Material and Device Characterization, Wiley, USA 1990

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n308kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.