Title variants
Languages of publication
Abstracts
In this paper, we study general solutions of the new fifth order nonlinear evolution and the Burgers KP equations with the aid of the two variables (G'/G,1/G)-expansion method. The kink, bell-shaped solitary wave, periodic and singular periodic solutions are obtained. Finally, the numerical simulations add to these obtained solutions.
Discipline
- 02.30.Ik: Integrable systems
- 05.45.Yv: Solitons(see 52.35.Sb for solitons in plasma; for solitons in acoustics, see 43.25.Rq—in Acoustics Appendix; see 42.50.Md, 42.65.Tg, 42.81.Dp for solitons in optics; see also 03.75.Lm in matter waves; for solitons in space plasma physics, see 94.05.Fg; for solitary waves in fluid dynamics, see 47.35.Fg)
Journal
Year
Volume
Issue
Pages
245-251
Physical description
Dates
published
2015-09
received
2015-02-17
(unknown)
2015-05-20
Contributors
References
- [1] G.B. Whitham, Linear and Nonlinear Waves, Wiley, California 1974
- [2] L. Debtnath, Nonlinear Partial Differential Equations for Scientist and Engineers, Birkhauser, Boston 1997
- [3] Z. Zhao, Y. Zhang, W. Rui, Appl. Math. Comp. 248, 456 (2014), doi: 10.1016/j.amc.2014.10.024
- [4] P.M. Jordan, Math. Comp. Sim. 81, 18 (2010), doi: 10.1016/j.matcom.2010.06.011
- [5] C. Xifang, W. Hongyou, X. Chuanyou, J. Math. Phys. 47, 083515 (2006), doi: 10.1063/1.2234727
- [6] F. Demontis, B. Prinari, C. van der Mee, J. Math. Phys. 55, 101505 (2014), doi: 10.1063/1.4898768
- [7] H. Yilmaz, J. Nonlin. Math. Phys. 22, 32 (2015), doi: 10.1080/14029251.2015.996438
- [8] V. Kumar, R.K. Gupta, R. Jiwari, Commun. Theor. Phys. 60, 175 (2013), doi: 10.1088/0253-6102/60/2/06
- [9] I.E. Inan, D. Kaya, Y. Ugurlu, Appl. Math. Comp. 216, 2507 (2010), doi: 10.1016/j.amc.2010.03.119
- [10] F. Taşcan, A. Bekir, Appl. Math. Comp. 215, 3134 (2009), doi: 10.1016/j.amc.2009.09.027
- [11] M. Eslami, M. Mirzazadeh, Ocean Eng. 83, 133 (2014), doi: 10.1016/j.oceaneng.2014.02.026
- [12] J.H. He, X.H. Wu, Chaos Solitons Fractals 30, 700 (2006), doi: 10.1016/j.chaos.2006.03.020
- [13] E. Fan, Phys. Lett. A 277, 212 (2000), doi: 10.1016/S0375-9601(00)00725-8
- [14] H. Chen, H. Zhang, Chaos Solitons Fractals 19, 71 (2004), doi: 10.1016/S0960-0779(03)00081-X
- [15] Z. Fu, S. Liu, S. Liu, Q. Zhao, Phys. Lett. A 290, 72 (2001), doi: 10.1016/S0375-9601(01)00644-2
- [16] M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008), doi: 10.1016/j.physleta.2007.07.051
- [17] S. Guo, Y. Zhou, Appl. Math. Comp. 215, 3214 (2010), doi: 10.1016/j.amc.2009.10.008
- [18] H.L. Lü, X.Q. Liu, L. Niu, Appl. Math. Comp. 215, 3811 (2010), doi: 10.1016/j.amc.2009.11.021
- [19] L. Li, E. Li, M. Wang, Appl. Math. J. Chin. Univ. 25, 454 (2010), doi: 10.1007/s11766-010-2128-x
- [20] İ. Aslan, Acta Phys. Pol. A 123, 16 (2013), doi: 10.12693/APhysPolA.123.16
- [21] T. Öziş, İ. Aslan, Commun. Theor. Phys. 51, 577 (2009), doi: 10.1088/0253-6102/51/4/01
- [22] İ. Aslan, Commun. Theor. Phys. 61, 595 (2014), doi: 10.1088/0253-6102/61/5/09
- [23] İ. Aslan, Nonlin. Anal. Model. Control. 20, 132 (2015), doi: 10.15388/NA.2015.1.9
- [24] İ. Aslan, Math. Method Appl. Sci. 38, 27 (2015), doi: 10.1002/mma.3047
- [25] A.M. Wazwaz, Computers Fluids 84, 97 (2013), doi: 10.1016/j.compfluid.2013.05.020
- [26] A.M. Wazwaz, Appl. Math. Model. 38, 110 (2014), doi: 10.1016/j.apm.2013.06.009
- [27] E.M.E. Zayed, M.A.M. Abdelaziz, Math. Prob. Eng. 2012, 726051 (2012), doi: 10.1155/2012/725061
- [28] S. Demiray, Ö. Ünsal, A. Bekir, Acta Phys. Pol. A 125, 1093 (2014), doi: 10.12693/APhysPolA.125.1093
- [29] A.M. Wazwaz, Phys. Scr. 83, 015012 (2011), doi: 10.1088/0031-8949/83/01/015012
- [30] N. Taghizadeh, M. Mirzazadeh, F. Farahrooz, Appl. Math. Model. 35, 3991 (2011), doi: 10.1016/j.apm.2011.02.001
- [31] A.M. Wazwaz, Appl. Math. Comp. 200, 437 (2008), doi: 10.1016/j.amc.2007.11.032
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n301kz