PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 3 | 245-251
Article title

New Applications of the (G'/G,1/G)-Expansion Method

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, we study general solutions of the new fifth order nonlinear evolution and the Burgers KP equations with the aid of the two variables (G'/G,1/G)-expansion method. The kink, bell-shaped solitary wave, periodic and singular periodic solutions are obtained. Finally, the numerical simulations add to these obtained solutions.
Keywords
EN
Year
Volume
128
Issue
3
Pages
245-251
Physical description
Dates
published
2015-09
received
2015-02-17
(unknown)
2015-05-20
References
  • [1] G.B. Whitham, Linear and Nonlinear Waves, Wiley, California 1974
  • [2] L. Debtnath, Nonlinear Partial Differential Equations for Scientist and Engineers, Birkhauser, Boston 1997
  • [3] Z. Zhao, Y. Zhang, W. Rui, Appl. Math. Comp. 248, 456 (2014), doi: 10.1016/j.amc.2014.10.024
  • [4] P.M. Jordan, Math. Comp. Sim. 81, 18 (2010), doi: 10.1016/j.matcom.2010.06.011
  • [5] C. Xifang, W. Hongyou, X. Chuanyou, J. Math. Phys. 47, 083515 (2006), doi: 10.1063/1.2234727
  • [6] F. Demontis, B. Prinari, C. van der Mee, J. Math. Phys. 55, 101505 (2014), doi: 10.1063/1.4898768
  • [7] H. Yilmaz, J. Nonlin. Math. Phys. 22, 32 (2015), doi: 10.1080/14029251.2015.996438
  • [8] V. Kumar, R.K. Gupta, R. Jiwari, Commun. Theor. Phys. 60, 175 (2013), doi: 10.1088/0253-6102/60/2/06
  • [9] I.E. Inan, D. Kaya, Y. Ugurlu, Appl. Math. Comp. 216, 2507 (2010), doi: 10.1016/j.amc.2010.03.119
  • [10] F. Taşcan, A. Bekir, Appl. Math. Comp. 215, 3134 (2009), doi: 10.1016/j.amc.2009.09.027
  • [11] M. Eslami, M. Mirzazadeh, Ocean Eng. 83, 133 (2014), doi: 10.1016/j.oceaneng.2014.02.026
  • [12] J.H. He, X.H. Wu, Chaos Solitons Fractals 30, 700 (2006), doi: 10.1016/j.chaos.2006.03.020
  • [13] E. Fan, Phys. Lett. A 277, 212 (2000), doi: 10.1016/S0375-9601(00)00725-8
  • [14] H. Chen, H. Zhang, Chaos Solitons Fractals 19, 71 (2004), doi: 10.1016/S0960-0779(03)00081-X
  • [15] Z. Fu, S. Liu, S. Liu, Q. Zhao, Phys. Lett. A 290, 72 (2001), doi: 10.1016/S0375-9601(01)00644-2
  • [16] M. Wang, X. Li, J. Zhang, Phys. Lett. A 372, 417 (2008), doi: 10.1016/j.physleta.2007.07.051
  • [17] S. Guo, Y. Zhou, Appl. Math. Comp. 215, 3214 (2010), doi: 10.1016/j.amc.2009.10.008
  • [18] H.L. Lü, X.Q. Liu, L. Niu, Appl. Math. Comp. 215, 3811 (2010), doi: 10.1016/j.amc.2009.11.021
  • [19] L. Li, E. Li, M. Wang, Appl. Math. J. Chin. Univ. 25, 454 (2010), doi: 10.1007/s11766-010-2128-x
  • [20] İ. Aslan, Acta Phys. Pol. A 123, 16 (2013), doi: 10.12693/APhysPolA.123.16
  • [21] T. Öziş, İ. Aslan, Commun. Theor. Phys. 51, 577 (2009), doi: 10.1088/0253-6102/51/4/01
  • [22] İ. Aslan, Commun. Theor. Phys. 61, 595 (2014), doi: 10.1088/0253-6102/61/5/09
  • [23] İ. Aslan, Nonlin. Anal. Model. Control. 20, 132 (2015), doi: 10.15388/NA.2015.1.9
  • [24] İ. Aslan, Math. Method Appl. Sci. 38, 27 (2015), doi: 10.1002/mma.3047
  • [25] A.M. Wazwaz, Computers Fluids 84, 97 (2013), doi: 10.1016/j.compfluid.2013.05.020
  • [26] A.M. Wazwaz, Appl. Math. Model. 38, 110 (2014), doi: 10.1016/j.apm.2013.06.009
  • [27] E.M.E. Zayed, M.A.M. Abdelaziz, Math. Prob. Eng. 2012, 726051 (2012), doi: 10.1155/2012/725061
  • [28] S. Demiray, Ö. Ünsal, A. Bekir, Acta Phys. Pol. A 125, 1093 (2014), doi: 10.12693/APhysPolA.125.1093
  • [29] A.M. Wazwaz, Phys. Scr. 83, 015012 (2011), doi: 10.1088/0031-8949/83/01/015012
  • [30] N. Taghizadeh, M. Mirzazadeh, F. Farahrooz, Appl. Math. Model. 35, 3991 (2011), doi: 10.1016/j.apm.2011.02.001
  • [31] A.M. Wazwaz, Appl. Math. Comp. 200, 437 (2008), doi: 10.1016/j.amc.2007.11.032
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n301kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.