Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-450-B-454
Article title

On the Frequency C-V and G-V Characteristics of Au/Poly (3-Substituted thiophene) (P3DMTFT)/n-GaAs Schottky Barrier Diodes

Title variants
Languages of publication
The frequency-dependent electrical characteristics of Au/Poly (3-Substituted thiophene) (P3DMTFT)/ n-GaAs Schottky barrier diodes have been investigated by using capacitance-voltage (C-V) and conductance-voltage (G/ω-V) measurements at room temperature. Negative capacitance behavior has been observed in the C-V characteristic for each frequency. The magnitude of absolute value of C was found to increase with decreasing frequency in the forward bias region. The value of G/ω increases with decreasing frequency in the positive region. This can be attributed to the increase in the polarization at low frequencies and to the fact that more carriers are introduced into the structures. Negative capacitance phenomenon can be explained by the loss of interface charges from the occupied states below the Fermi level, caused by impact ionization process. According to obtained result, the values of C and G/ω are strong functions of frequency and applied bias voltage, particularly in the accumulation an inversion region. Doping concentration (N_{d}), diffusion potential (V_{d}), Fermi energy level (E_{f}), and barrier height (Φ_{b}(C-V)) values have been calculated from reverse bias C^{-2}-V plots for 3 MHz. Finally, the obtained value of R_{s} in the accumulation region increases with decreasing frequency.
  • Department of Physics, Süleyman Demirel University, Isparta, Turkey
  • Department of Physics, Süleyman Demirel University, Isparta, Turkey
  • Department of Physics, Süleyman Demirel University, Isparta, Turkey
  • Department of Chemistry, Süleyman Demirel University, Isparta, Turkey
  • Department of Physics, Atatürk Üniversity, Erzurum, Turkey
  • [1] F. Yakuphanoğlu, Sensor Actuat. A 147, 104 (2008), doi: 10.1016/j.sna.2008.04.007
  • [2] A.F. Özdemir, D.A. Aldemir, A. Kökce, S. Altındal, Synthetic Met. 159, 1427 (2009), doi: 10.1016/j.synthmet.2009.03.020
  • [3] H.C. Card, E.H. Rhoderick, J. Phys. D: Appl. Phys. 4, 1589 (1971), doi: 10.1088/0022-3727/4/10/319
  • [4] Ş. Aydoğan, M. Sağlam, A. Türüt, J. Polym. Sci. Part B 44, 1572 (2006), doi: 10.1002/polb.20812
  • [5] S. Ashok, J.M. Borrego, R.J. Guttman, Solid State Electron. 22, 621 (1979), doi: 10.1016/0038-1101(79)90135-7
  • [6] Ö. Vural, Y. Şafak, A. Türüt, Ş. Altındal, J. Alloy. Compd. 513, 107 (2012), doi: 10.1016/j.jallcom.2011.09.101
  • [7] S. Mangal, S. Adhikari, P. Banerji, Appl. Phys. Lett. 94, 223509 (2009), doi: 10.1063/1.3149703
  • [8] E.H. Nicollian, J.R. Brews, Metal Oxide Semiconductor (MOS) Physics and Technology, John Wiley and Sons, New York 1982
  • [9] D. Korucu, A. Türüt, Ş. Altındal, Curr. Appl. Phys. 13, 1101 (2013), doi: 10.1016/j.cap.2013.03.001
  • [10] S. Noor Mohammad, Z.F. Fan, A.E. Botchkarev, W. Kim, O. Aktaş, H. Markoç, F. Shiwei, K.A. Jones, M.A. Derengek, Philos. Mag. B 81, 453 (2001), doi: 10.1080/13642810108225442
  • [11] J. Bisquert, G. Garcia-Belmonte, A. Pitarch, Phys. Lett. 422, 184 (2006), doi: 10.1016/j.cplett.2006.02.060
  • [12] M. Ershov, M. Buchanan, Z.R. Wasilewski, A.K. Joncher, Electr. Devices 45, 2196 (1998), doi: 10.1109/16.725254
  • [13] X. Wu, E.S. Yang, H.L. Evans, J. Appl. Phys. 68, 2845 (1990), doi: 10.1063/1.346442
  • [14] B.K. Jones, J. Santana, M. McPherson, Solid State Commun. 107, 47 (1988), doi: 10.1016/S0038-1098(98)00162-8
  • [15] K.S.A. Butcher, T.L. Tansley, D. Alexiev, Solid State Electron. 39, 333 (1996), doi: 10.1016/0038-1101(95)00143-3
  • [16] H.L. Evans, X. Wu, E.S. Yang, P.S. Ho, J. Appl. Phys. 60, 3611 (1986), doi: 10.1063/1.337567
  • [17] J.-C. Mpeko, Appl. Phys. Lett. 71, 3730 (1997), doi: 10.1063/1.120496
  • [18] M. Gökçen, H. Altuntaş, S. Altindal, S. Özcelik, Mater. Sci. Semicond. Process. 15, 41 (2012), doi: 10.1016/j.mssp.2011.08.001
  • [19] Ş. Karataş, M. Çakar, Synth. Met. 159, 347 (2009), doi: 10.1016/j.synthmet.2008.11.025
  • [20] A. Tataroğlu, Ş. Altındal, M.M. Bülbül, Microelectron. Eng. 81, 140 (2005), doi: 10.1016/j.mee.2005.04.008
  • [21] C.Y. Zhu, L.F. Feng, C.D. Wang, H.X. Cong, G.Y. Zhang, Z.J. Yang, Z.Z. Chen, Solid-State Electronics 53, 324 (2009), doi: 10.1016/j.sse.2009.01.002
  • [22] K. Misiakos, D. Tsamakis, E. Tsoi, Solid-State Electronics 41, 1099 (1997), doi: 10.1016/S0038-1101(97)00060-9
  • [23] J. Werner, A.F.J. Levi, R.T. Tung, M. Anzlowar, M. Pinto, Phys. Rev. Lett. 60, 53 (1988), doi: 10.1103/PhysRevLett.60.53
  • [24] P. Chattopadhyay, A.N. Daw, Solid-State Electron. 29, 555 (1986), doi: 10.1016/0038-1101(86)90078-X
  • [25] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd ed., Clarendon, Oxford 1988
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.