Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-145-B-148

Article title

Influence of Pd Addition of CoCrMo Biomedical Alloys on the Microhardness Behaviour

Content

Title variants

Languages of publication

EN

Abstracts

EN
CoCrMo alloys are often used as the material for metal artificial joint because of their high corrosion resistance and mechanical properties. In this study CoCrMo alloys having different palladium amount of produced by investment casting method. Scanning electron microscopy, X-ray diffraction method and indentation tests were used to examine the mechanical properties of the alloys. Indentation experiments were carried out using Vickers indenter that the loads range from 0.245 to 9.8 N. The alloys exhibit significant load-dependence (i.e., indentation size effect). Meyer's law, proportional specimen resistance model, and Hays-Kendall model were used to analyze the load dependence of the hardness. As a results for load-independent determination of the CoCrMo alloys, the Hays-Kendall model is found to be more effective than the proportional specimen resistance model and microhardness values decreases with increase of the Pd content.

Keywords

EN

Year

Volume

128

Issue

2B

Pages

B-145-B-148

Physical description

Dates

published
2015-8

Contributors

author
  • Mustafa Kemal University, Science and Art Faculty, Micro/Nanomechanic Characterization Laboratory, Hatay 31034, Turkey
author
  • Mustafa Kemal University, Science and Art Faculty, Micro/Nanomechanic Characterization Laboratory, Hatay 31034, Turkey
author
  • Mustafa Kemal University, Science and Art Faculty, Micro/Nanomechanic Characterization Laboratory, Hatay 31034, Turkey

References

  • [1] H.S. Güder, E. Sahin, O. Sahin, H. Göçmez, C. Duran, H.A. Çetinkara, Acta Phys. Pol. A 120, 1026 (2011). http://przyrbwn.icm.edu.pl/APP/PDF/120/a120z6p08.pdf
  • [2] J. Escobedo, J. Méndez, D. Cortés, J. Gómez, M. Méndez, H. Mancha, Mater. Des. 17, 79 (1996), doi: 10.1016/S0261-3069(96)00036-2
  • [3] J.V. Giacchi, C.N. Morando, O. Fornaroc, H.A. Palacio, Mater. Charact. 62, 53 (2011), doi: 10.1016/j.matchar.2010.10.011
  • [4] J. Campbell, Castings: The New Metallurgy of Cast Metals, 2nd ed., Elsevier Sci. Technol., Oxford 2003, doi: 10.1016/B978-075064790-8/50026-7
  • [5] D.M. Stefanescu, Science and Engineering of Casting Solidification, 2nd ed., Springer US, USA 2009. http://springer.com/jp/book/9780387746098
  • [6] S. Longquan, D.O. Northwood, C. Zhengwang, J. Mater. Sci. 28, 1312 (1993). http://link.springer.com/article/10.1007/BF01191970
  • [7] L.E. Ramírez, M. Castro, M. Méndez, J. Lacaze, M. Herrrera, G. Lesoult, Scr. Mater. 47, 811 (2002), doi: 10.1016/S1359-6462(02)00305-6
  • [8] K.S. Park, J.K. Park, Acta Mater. 47, 2177 (1999), doi: 10.1016/S1359-6454(99)00060-9
  • [9] S.-H. Lee, E. Takahashi, N. Nomura, A. Chiba, Mater. Trans. 47, 287 (2006), doi: 10.2320/matertrans.47.287
  • [10] K. Sangwal, B. Surowska, P. Blaziak, Mater. Chem. Phys. 80, 428 (2003), doi: 10.1016/S0254-0584(02)00546-1
  • [11] J. Gong, H. Miao, Z. Zhao, Z. Guan, Mater. Sci. Eng. A 303, 179 (2001), doi: 10.1016/S0921-5093(00)01845-1
  • [12] O. Şahin, O. Uzun, U. Kölemen, N. Uçar, Mater. Charact. 59, 729 (2008), doi: 10.1016/j.matchar.2007.06.005
  • [13] C. Hays, E.G. Kendall, Metallography 6, 275 (1973), doi: 10.1016/0026-0800(73)90053-0

Document Type

Publication order reference

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n2b040kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.