PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-135-B-137
Article title

Band Gap Calculations of Ternary InN_{0.03125}P_{0.96875} Alloy

Content
Title variants
Languages of publication
EN
Abstracts
EN
In the current study, structural and electronic properties of ternary dilute nitride InN_{x}P_{1-x} alloys have been investigated by using density functional theory. The equilibrium lattice parameter of studied material has been calculated in zinc-blende phase. 2× 2× 2 supercell with 64 atoms has been used for calculations. The lattice parameter of InN_{0.03125}P_{0.96875} alloy is found to be 5.852 Å. By means of the equilibrium lattice parameter, electronic band structure has been calculated for dilute 3.125% nitride composition. It is found that a ternary InN_{0.03125}P_{0.96875} alloy is a direct band gap semiconductor with energy band gap of 1.198 eV.
Keywords
Contributors
author
  • Sakarya University, Department of Physics, Sakarya, Turkey
author
  • Sakarya University, Department of Physics, Sakarya, Turkey
author
  • Sakarya University, Department of Physics, Sakarya, Turkey
author
  • Sakarya University, Department of Physics, Sakarya, Turkey
References
  • [1] J.C. Slater, Adv. Quant. Chem. 1, 35 (1964), doi: 10.1016/S0065-3276(08)60374-3
  • [2] P. Blaha, K. Schwarz, G. Madsen, D. Kvasnicka, J. Luitz, An Augmented Plane Wave plus Local Orbital Program for Calculating the Crystal Properties, 12th ed., Wien 2012. http://www.wien2k.at
  • [3] J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 7, 3865 (1996), doi: 10.1103/PhysRevLett.77.3865
  • [4] H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976), doi: 10.1103/PhysRevB.13.5188
  • [5] F. Birch, Phys. Rev. 71, 809 (1947), doi: 10.1103/PhysRev.71.809
  • [6] O. Madelung, L. Bornstein, Semiconductors, Physics of Group IV Elements and III-V, Compounds, Vol. 17, New Series, Group III, Springer Verlag, Berlin 1982
  • [7] R.W.G. Wyckoff, Crystal Structures, 2nd ed., Krieger, Malabar 1986
  • [8] A. Mujica, R.J. Needs, Phys. Rev. B 55, 9659 (1997), doi: 10.1103/PhysRevB.55.9659
  • [9] S.Z. Karazhanov, L.C. Lew Yan Voon, Semiconductors 39, 161 (2005), doi: 10.1134/1.1864192
  • [10] A. Tabata, A.P. Lima, L.K. Teles, L.M.R. Scolfaro, J.R. Leite, V. Lemos, B. Schöttker, T. Frey, D. Schikora, K. Lischka, Appl. Phys. Lett. 74, 362 (1999), doi: 10.1063/1.123072
  • [11] A.U. Sheleg, V.A. Savastenko, Inorg. Mater. 15, 1598 (1979)
  • [12] J. Schörmann, D.J. As, K. Lischka, P. Schley, R. Goldhahn, S.F. Li, W. Löffler, M. Hetterich, H. Kalt, Appl. Phys. Lett. 89, 261903 (2006), doi: 10.1063/1.2422913
  • [13] M.E. Sherwin, T.J. Drummond, J. Appl. Phys. 69, 8423 (1991), doi: 10.1063/1.347412
  • [14] S.Q. Wang, H.Q. Ye, J. Phys. Condens. Matter 14, 9579 (2002), doi: 10.1088/0953-8984/14/41/313
  • [15] J. Kim, M.V. Fischetti, J. Appl. Phys. 108, 013710 (2010), doi: 10.1063/1.3437655
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n2b037kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.