PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-93-B-96
Article title

Solving Generalized Semi-Infinite Programming Problems with a Trust Region Method

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, a trust region method for generalized semi-infinite programming problems is presented. The method is based on [O. Yi-gui, "A filter trust region method for solving semi-infinite programming problems", J. Appl. Math. Comput. 29, 311 (2009)]. We transformed the method from standard to generalized semi-infinite programming problems. The semismooth reformulation of the Karush-Kuhn-Tucker conditions using nonlinear complementarity functions is used. Under some standard regularity condition from semi-infinite programming, the method is convergent globally and superlinearly. Numerical examples from generalized semi-infinite programming illustrate the performance of the proposed method.
Keywords
EN
Publisher

Year
Volume
128
Issue
2B
Pages
B-93-B-96
Physical description
Dates
published
2015-8
Contributors
  • Hacettepe University, Mathematics, Ankara, Turkey
References
  • [1] M.A. Goberna, M. Lopez, ISBN-13: 978-0471970408HUKHUKLinear Semi-Infinite Optimization, Wiley, Chichester 1998
  • [2] R. Hettich, K. Kortanek, SIAM Rev. 35, 380 (1993), doi: 10.1137/1035089
  • [3] M. Lopez, G. Still, Europ. J. Oper. Res. 180, 491 (2007), doi: 10.1016/j.ejor.2006.08
  • [4] R.M. Reemtsen, S. Görner, in: Semi-Infinite Programming, Eds. R.M. Reemtsen, J. Rückmann, in: Kluwer Nonconvex Optim. Appl., Vol. 25, Springer, p. 195, doi: 10.1007/978-1-4757-2868-2_7
  • [5] Semi-Infinite Programming, Eds. R. Reemtsen, J.-J. Rückmann, Kluwer, Boston 1998, doi: 10.1007/978-1-4757-2868-2_7
  • [6] O. Stein, Bilevel Strategies in Semi-Infinite Programming, Kluwer, Boston 2003, doi: 10.1007/978-1-4419-9164-5
  • [7] G. Still, Europ. J. Operat. Res. 119, 301 (1999), doi: 10.1016/S0377-2217(99)00132-0
  • [8] G. Still, Optimization 49, 223 (2001), doi: 10.1080/02331930108844531
  • [9] F.G. Vazquez, J.-J. Rückmann, O. Stein, G. Still, J. Comput. Appl. Math. 217, 394 (2008), doi: 10.1016/j.cam.2007.02.012
  • [10] G.-W. Weber, Generalized Semi-Infinite Optimization and Related Topics, Heldermann Verlag, Lemgo (Germany) 2003
  • [11] L. Qi, S.-Y. Wu, G. Zhou, J. Global Optim. 27, 215 (2003), doi: 10.1023/A:1024814401713
  • [12] F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley Interscience, New York 1983, doi: 10.1137/1.9781611971309
  • [13] O. Stein, A. Tezel, J. Global Optimiz. 41, 245 (2008), doi: 10.1007/s10898-007-9228-z
  • [14] O. Yi-gui, J. Appl. Math. Comput. 29, 311 (2009), doi: 10.1007/s12190-008-0132-6
  • [15] O. Stein, A. Tezel, SIAM J. Optimiz. 20, 1052 (2009), doi: 10.1137/080719765
  • [16] A. Ben-Tal, A. Nemirovski, Operat. Res. Lett. 25, 1 (1999), doi: 10.1016/S0167-6377(99)00016-4
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n2b025kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.