Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-78-B-81

Article title

The Modeling and Hardware Implementation of Semiconductor Circuit Elements by Using ANN and FPGA

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
This study, the modeling and hardware implementation of semiconductor circuit elements very frequently used in electronic circuits are carried out by using artificial neural networks and field programmable gate array chip. Initially the artificial neural network models obtained has been written in very high speed integrated circuit hardware description language (VHDL). Then, these configurations have been simulated and tested under ModelSim Xilinx software. Finally, the best configuration has been implemented under the Xilinx Spartan-3E FPGA (XC3S500E) chip of Xilinx. The modeling of electronic circuit elements is very important both in respect of engineering, and in respect of practical mathematics. The main aim is to shorten the simulation time and to examine the real physical system applications easily by using the model elements instead of using the ones used in real applications. The effectiveness of the implemented artificial neural network models on field programmable gate array was found successful.

Keywords

EN

Contributors

author
  • Yuzuncu Yil University, Ercis Technical Vocational School of Higher Education, Electronic and Communication Technologies, Van, Turkey

References

  • [1] T.A. York, Microproc. Microsyst. 17, 371 (1993), doi: 10.1016/0141-9331(93)90059-G
  • [2] D.K. Iakovidis, D.E. Maroulis, D.G. Bariamis, Microproc. Microsyst. 31, 160 (2007), doi: 10.1016/j.micpro.2006.02.013
  • [3] J. Li, D. An, L. Lang, D. Yang, Proc. Eng. 29, 2633 (2012), doi: 10.1016/j.proeng.2012.01.363
  • [4] K. Kompton, S. Hauck, ACM Comput. Surv. 34, 171 (2002), doi: 10.1145/508352.508353
  • [5] J. Lu, L. Jing, Proc. Eng. 16, 858 (2011), doi: 10.1016/j.proeng.2011.08.1166
  • [6] G. Krampl, M. Rona, Microelectron. J. 33, 855 (2002), doi: 10.1016/S0026-2692(02)00092-7
  • [7] P. Ferreira, P. Ribeiro, A. Antunes, F.M. Dias, Neurocomputing 71, 71 (2006), doi: 10.1016/j.neucom.2006.11.028
  • [8] S.K. Mandal, S. Sural, A. Patra, IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 27, 188 (2008), doi: 10.1109/TCAD.2007.907284
  • [9] D. Shen, L. Jin, X. Ma, Lect. Notes Comput. Sci. 3173, 988 (2004), doi: 10.1007/978-3-540-28647-9_163
  • [10] O. Polat, T. Yıldırım, Digit. Sign. Proc. 20, 881 (2010), doi: 10.1016/j.dsp.2009.10.013
  • [11] H. Mekki, A. Mellit, H. Salhi, B. Khaled, AIP Conf. Proc. 1019, 211 (2008), doi: 10.1063/1.2952981
  • [12] S. Saadi, A. Guessoum, M. Bettayeb, Microproc. Microsyst. 37, 52 (2013), doi: 10.1016/j.micpro.2012.09.013
  • [13] S. Li, M. Moussa, S. Areibi, Canad. J. Electric. Comput. Eng. 31, 31 (2006), doi: 10.1109/CJECE.2006.259201
  • [14] H. Mekki, A. Mellit, S.A. Kalogirou, A. Messai, G. Furlan, Prog. Photovolt. Res. Appl. 18, 115 (2010), doi: 10.1002/pip.950

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n2b021kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.