Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2B | B-43-B-45

Article title

Numerical Analysis of Pulverised Coal Fired Boiler with Different Burner Geometries

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Pulverized coal combustion is extensively used in utility boilers, industrial boilers, furnaces, kilns, and other energy conversion appliances. The effective utilization of pulverized coal is the main problem in study of combustion processes, particularly in burning low-grade coal. It is well known that the emission of nitrogen oxides (NO_{x}) during coal combustion is a main environmental problem. In this study, three different pulverised coal burner geometries for a pulverised coal fired boiler have been studied by numerical analysis. GLI-Tunçbilek coal was used as fuel. Three-dimensional numerical analysis was carried out using Ansys Fluent code. Realizable K-ε turbulence method, single rate devolatilization method, multiple char combustion method and second-order upwind discretization method were used during calculations. Coal particle diameter and coal mass flow rate were assumed to be 70 μm and 378 kg/h respectively.

Keywords

EN

Year

Volume

128

Issue

2B

Pages

B-43-B-45

Physical description

Dates

published
2015-8

Contributors

author
  • Mechanical Engineering, Isparta, Turkey
author
  • Mechanical Engineering, Isparta, Turkey
author
  • Mechanical Engineering, Isparta, Turkey

References

  • [1] P. Edge, S. Gubba, L. Ma, R. Porter, M. Pourkashanian, A. Williams,Proc. Combust. Inst. 33, 2709 (2011), doi: 10.1016/j.proci.2010.07.063
  • [2] C. Kai, L. Bing, W. Yuxin, Y. Hairui, L. Junfu, Z. Hai, Chinese J. Chem. Eng. 22, 193 (2014), doi: 10.1016/S1004-9541(14)60032-X
  • [3] R. Backreedy, L. Fletcher, L. Ma, M. Pourkashanian, A. Williams, Combust. Sci. Technol. 178, 763 (2006), doi: 10.1080/00102200500248532
  • [4] M. Gharebaghi, R.M.A. Irons, L. Ma, M. Pourkashanian, A. Pranzitelli, Int. J. Greenhouse Gas Control 5S, S100 (2011), doi: 10.1016/j.ijggc.2011.05.030
  • [5] D. Toporov, P. Bocian, P. Heil, A. Kellermann, H. Stadler, S. Tschunko, M. Förster, R. Kneer, Combust. Flame 155, 605 (2008), doi: 10.1016/j.combustflame.2008.05.008
  • [6] R. Jovanovic, B. Rasuo, P. Stefanovic, D. Cvetinovic, B. Swiatkowski, Int. J. Heat Mass Tran. 58, 654 (2013), doi: 10.1016/j.ijheatmasstransfer.2012.11.070
  • [7] ANSYS FLUENT 14 User's Guide, Fluent Inc., 2013, USA
  • [8] P. Warzecha, A. Boguslawski, Energy 66, 732 (2014), doi: 10.1016/j.energy.2013.12.015
  • [9] S. Belosevic, V. Beljanski, I. Tomanovic, N. Crnomarkovic, D. Tucakovic, T. Zivanovic, Energy Fuels 26, 425 (2012), doi: 10.1021/ef201380z
  • [10] G.G. De Soete, Proc. Combust. Inst. 23, 1257 (1991), doi: 10.1016/S0082-0784(06)80388-7

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n2b010kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.