Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
This paper describes an experimental study on development of giant magnetoresistance material based on cobalt ferrite (CoFe₂O₄). We have successfully developed a new giant magnetoresistance material based on CoFe₂O₄ i.e; sandwich (CoFe₂O₄/CuO/CoFe₂O₄), spin valve (FeMn/CoFe₂O₄/CuO/CoFe₂O₄), and organic giant magnetoresistance (CoFe₂O₄/Alq₃/CoFe₂O₄) using dc-opposed target magnetron sputtering method. Crystalline structure and morphology of thin films were characterized by X-ray diffraction and scanning electron microscope. The electrical properties were characterized using a four-point probe and magnetic properties were characterized using a vibrating sample magnetometer. In sandwich structure, the giant magnetoresistance ratio maximum are found at room temperature in CoFe₂O₄/CuO/CoFe₂O₄ thin film is 70% when CoFe₂O₄ and CuO layer thickness are 62.5 nm and 14.4 nm, respectively. The maximum of giant magnetoresistance ratio of the spin valve structure obtained is 32.5% at FeMn layer thickness of 45 nm. Meanwhile, in organic giant magnetoresistance the maximum value of the giant magnetoresistance ratio are approximately 35.5% at room temperature.
Journal
Year
Volume
Issue
Pages
B-19-B-22
Physical description
Dates
published
2015-8
Contributors
author
- Institut Teknologi Bandung, Department of Physics, Jl. Ganesa 10, Bandung, Indonesia
- Institut Teknologi Sumatera, Department of Physics, Jl. Terusan Ryacudu, Lampung Selatan, Indonesia
author
- Universitas Negeri Padang, Department of Physics, Jl. Prof. Hamka, Padang, Indonesia
author
- Institut Teknologi Bandung, Department of Physics, Jl. Ganesa 10, Bandung, Indonesia
author
- Institut Teknologi Bandung, Department of Physics, Jl. Ganesa 10, Bandung, Indonesia
References
- [1] M. Djamal, Ramli, F. Haryanto, Khairurrijal, GMR Biosensors for Clinical Diagnostics, in: Biosensors for Health, Environment and Biosecurity, Ed. P.A. Serra, InTech, Rijeka 2011, p. 149, doi: 10.5772/16365
- [2] B.G. Toth, L. Peter, L. Pogany, A. Revesz, I. Bakonyi, J. Electrochem. Soc. 161, D154 (2014), doi: 10.1149/2.053404jes
- [3] Ramli, E. Sustini, N. Rauf, M. Djamal, Adv. Mater. Res. 979, 85 (2014), doi: 10.4028/www.scientific.net/AMR.979.85
- [4] Ramli, M. Djamal, F. Haryanto, S. Viridi, Khairurrijal, Adv. Mater. Res. 535, 1319 (2012), doi: 10.4028/www.scientific.net/AMR.535-537.1319
- [4] R.G.Mani, A. Kriisa, W. Wegscheider, Sci Rep. 3, 2747 (2013), doi: 10.1038/srep02747
- [5] J-W. Yoo, H.W. Jang, V.N. Prigodin, C. Kao, C.B. Eom, A.J. Eptein, Phys. Rev. B 80, 205207 (2009), doi: 10.1103/PhysRevB.80.205207
- [6] J.H. Miao, S.L. Yuan, L. Yuan, G.M. Ren, X. Xiao, G.Q. Yu, Y.Q. Wang, S.Y. Yin, Mater. Res. Bull. 43, 631 (2008), doi: 10.1016/j.materresbull.2007.04.006
- [7] H. Matsuda, H. Sakakima, J. Phys. D 44, 105001 (2011), doi: 10.1088/0022-3727/44/10/105001
- [8] N. Tezuka, J. Mag. Magn. Matter. 324, 3588 (2012), doi: 10.1016/j.jmmm.2012.02.097
- [9] J.P. Moussy, J. Phys. D 46 143001 (2013), doi: 10.1088/0022-3727/46/14/143001
- [10] B.D. Culity, C.D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, New Jersey 2009, doi: 10.1002/9780470386323
- [11] J. Lee, J.Y. Park, Y. Oh, C.S. Kim, J. Appl. Phys. 84, 2801 (1998), doi: 10.1063/1.368393
- [12] C. Suryanarayana, M.G. Norton, X-ray Diffraction, A Practical Approach, Plenum Press, New York 1998, doi: 10.1007/978-1-4899-0148-4
- [13] S. Zhang, P.M. Levy, J. Appl. Phys. 73, 5315 (1993), doi: 10.1063/1.353766
- [14] P. Bruno, C. Chappert, Phys. Rev. Lett. 67, 1602 (1991), doi: 10.1103/PhysRevLett.67.1602
- [15] B. Dieny, P. Humbert, V.S. Speriosu, S. Metin, B.A. Gurney, P. Baumgart, H. Lefakis, Phys. Rev. B 45, 806 (1992), doi: 10.1103/PhysRevB.45.806
- [16] U. Niedermeier, M. Vieth, R. Pätzold, W. Safert, H. von Seggern, Appl. Phys. Lett. 92, 193309 (2008), doi: 10.1063/1.2924765
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n2b004kz