Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 240-242

Article title

Dynamic Viscosity of Aluminum Oxide-Ethylene Glycol (Al₂O₃-EG) Nanofluids

Content

Title variants

Languages of publication

EN

Abstracts

EN
The paper presents the results of measurements of rheological properties of ethylene glycol (EG) based aluminum oxide (Al₂O₃) nanofluids. The nanofluids have been produced by two-step method with the use of commercially available nanoparticles. Dynamic viscosity curves and dependence of viscosity on temperature for these materials have been measured. It has shown that with higher concentration of nanoparticles in the suspension, these nanofluids exhibit the non-Newtonian flow and it can be considered as shear-thinning liquids. The effect of temperature on the dynamic viscosity in Al₂O₃-EG nanofluids can be modelled with the use of Vogel-Fulcher-Tammann expression.

Keywords

Contributors

author
  • Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
author
  • Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
author
  • Department of Nanotechnology, Institute of Ceramics and Building Materials, Warszawa, Poland
author
  • Department of Nanotechnology, Institute of Ceramics and Building Materials, Warszawa, Poland
author
  • Department of Biophysics, University of Rzeszow, Rzeszów, Poland

References

  • [1] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, J. Appl. Phys. 113, 011301 (2013), doi: 10.1063/1.4754271
  • [2] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, Powder Technol. 196, 89 (2009), doi: 10.1016/j.powtec.2009.07.025
  • [3] C.Y. Lin, J.C. Wang, T.C. Chen, Appl. Energy 88, 4527 (2011), doi: 10.1016/j.apenergy.2011.05.035
  • [4] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, Appl. Therm. Eng. 30, 2213 (2010), doi: 10.1016/j.applthermaleng.2010.05.036
  • [5] M.H. Esfe, A.Z. Ghadi, S.S. Mirtalebi Esforjani, M. Akbari, Acta Phys. Pol. A 124, 665 (2013), doi: 10.12693/APhysPolA.124.665
  • [6] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131 (2009), doi: 10.1016/j.cap.2007.12.008
  • [7] M.J. Pastoriza-Gallego, C. Casanova, R. Paramo, B. Barbes, J.L. Legido, M.M. Pineiro, J. Appl. Phys. 106, 064301 (2009), doi: 10.1063/1.3187732
  • [8] C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, H. Angue Mintsa, Int. J. Therm. Sci. 47, 103 (2008), doi: 10.1016/j.ijthermalsci.2007.01.033
  • [9] J.B. Mena, A.A. Ubices de Moraes, Y.R. Benito, G. Ribatski, J.A. Reis Parise, Appl. Therm. Eng. 51, 1092 (2013), doi: 10.1016/j.applthermaleng.2012.11.002
  • [10] M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Pineiro, Nanoscale Res. Lett. 6, 221 (2011), doi: 10.1186/1556-276X-6-221
  • [11] R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sust. Energ. Rev. 15, 1646 (2011), doi: 10.1016/j.rser.2010.11.035
  • [12] J. Albadr, S. Tayal, M. Alasadi, Case Studies Therm. Eng. 1, 38 (2013), doi: 10.1016/j.csite.2013.08.004
  • [13] Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S. Cheong, Y.C. Ahn, S.H. Kim, Powder Technol. 186, 145 (2008), doi: 10.1016/j.powtec.2007.11.020
  • [14] S.J. Chung, J.P. Leonard, I. Nettleship, J.K. Lee, Y. Soong, D.V. Martello, M.K. Chyu, Powder Technol. 194, 75 (2009), doi: 10.1016/j.powtec.2009.03.025
  • [15] F. Duan, T. Wong, A. Crivoi, Nanoscale Res. Lett. 7, 360 (2012), doi: 10.1186/1556-276X-7-360
  • [16] M.J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J.L. Legido, M.M. Pineiro, J. Chem. Thermodyn. 73, 23 (2014), doi: 10.1016/j.jct.2013.07.002

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n230kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.