Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The paper presents the results of measurements of rheological properties of ethylene glycol (EG) based aluminum oxide (Al₂O₃) nanofluids. The nanofluids have been produced by two-step method with the use of commercially available nanoparticles. Dynamic viscosity curves and dependence of viscosity on temperature for these materials have been measured. It has shown that with higher concentration of nanoparticles in the suspension, these nanofluids exhibit the non-Newtonian flow and it can be considered as shear-thinning liquids. The effect of temperature on the dynamic viscosity in Al₂O₃-EG nanofluids can be modelled with the use of Vogel-Fulcher-Tammann expression.
Discipline
Journal
Year
Volume
Issue
Pages
240-242
Physical description
Dates
published
2015-08
Contributors
author
- Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
author
- Department of Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
author
- Department of Nanotechnology, Institute of Ceramics and Building Materials, Warszawa, Poland
author
- Department of Nanotechnology, Institute of Ceramics and Building Materials, Warszawa, Poland
author
- Department of Biophysics, University of Rzeszow, Rzeszów, Poland
References
- [1] R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, J. Appl. Phys. 113, 011301 (2013), doi: 10.1063/1.4754271
- [2] Y. Li, J. Zhou, S. Tung, E. Schneider, S. Xi, Powder Technol. 196, 89 (2009), doi: 10.1016/j.powtec.2009.07.025
- [3] C.Y. Lin, J.C. Wang, T.C. Chen, Appl. Energy 88, 4527 (2011), doi: 10.1016/j.apenergy.2011.05.035
- [4] T.P. Teng, Y.H. Hung, T.C. Teng, H.E. Mo, H.G. Hsu, Appl. Therm. Eng. 30, 2213 (2010), doi: 10.1016/j.applthermaleng.2010.05.036
- [5] M.H. Esfe, A.Z. Ghadi, S.S. Mirtalebi Esforjani, M. Akbari, Acta Phys. Pol. A 124, 665 (2013), doi: 10.12693/APhysPolA.124.665
- [6] D. Zhu, X. Li, N. Wang, X. Wang, J. Gao, H. Li, Curr. Appl. Phys. 9, 131 (2009), doi: 10.1016/j.cap.2007.12.008
- [7] M.J. Pastoriza-Gallego, C. Casanova, R. Paramo, B. Barbes, J.L. Legido, M.M. Pineiro, J. Appl. Phys. 106, 064301 (2009), doi: 10.1063/1.3187732
- [8] C.T. Nguyen, F. Desgranges, N. Galanis, G. Roy, T. Maré, S. Boucher, H. Angue Mintsa, Int. J. Therm. Sci. 47, 103 (2008), doi: 10.1016/j.ijthermalsci.2007.01.033
- [9] J.B. Mena, A.A. Ubices de Moraes, Y.R. Benito, G. Ribatski, J.A. Reis Parise, Appl. Therm. Eng. 51, 1092 (2013), doi: 10.1016/j.applthermaleng.2012.11.002
- [10] M.J. Pastoriza-Gallego, L. Lugo, J.L. Legido, M.M. Pineiro, Nanoscale Res. Lett. 6, 221 (2011), doi: 10.1186/1556-276X-6-221
- [11] R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sust. Energ. Rev. 15, 1646 (2011), doi: 10.1016/j.rser.2010.11.035
- [12] J. Albadr, S. Tayal, M. Alasadi, Case Studies Therm. Eng. 1, 38 (2013), doi: 10.1016/j.csite.2013.08.004
- [13] Y. Hwang, J.K. Lee, J.K. Lee, Y.M. Jeong, S. Cheong, Y.C. Ahn, S.H. Kim, Powder Technol. 186, 145 (2008), doi: 10.1016/j.powtec.2007.11.020
- [14] S.J. Chung, J.P. Leonard, I. Nettleship, J.K. Lee, Y. Soong, D.V. Martello, M.K. Chyu, Powder Technol. 194, 75 (2009), doi: 10.1016/j.powtec.2009.03.025
- [15] F. Duan, T. Wong, A. Crivoi, Nanoscale Res. Lett. 7, 360 (2012), doi: 10.1186/1556-276X-7-360
- [16] M.J. Pastoriza-Gallego, L. Lugo, D. Cabaleiro, J.L. Legido, M.M. Pineiro, J. Chem. Thermodyn. 73, 23 (2014), doi: 10.1016/j.jct.2013.07.002
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n230kz