Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 216-218

Article title

Combinatorics of Lax Objects in Bethe Ansatz

Content

Title variants

Languages of publication

EN

Abstracts

EN
Algebraic Bethe Ansatz, also known as quantum inverse scattering method, is a consistent tool based on the Yang-Baxter equation which allows to construct Bethe Ansatz exact solutions. One of the most important objects in algebraic Bethe Ansatz is a monodromy matrix M̂, which is defined as an appropriate product of so-called Lax operators L̂ (local transition operators). Monodromy matrix as well as each of Lax operators acts in the tensor product of the quantum space 𝓗 with an auxiliary space ℂ². Thus M̂, when written in the standard basis of auxiliary space, consists of four elements Â, B̂, Ĉ, D̂, which are the operators acting in quantum space 𝓗, where B̂ and Ĉ are step operators and the remaining generate all constants of motion. In this work a consistent method of construction of the Bethe Ansatz eigenstates in terms of objects â, b̂, ĉ, d̂ i.e. matrix elements of the Lax operators in the auxiliary space is proposed.

Keywords

EN

Contributors

  • Rzeszów University of Technology, The Faculty of Mathematics and Applied Physics, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland

References

  • [1] H. Bethe, Z. Phys. 71, 205 (1931) (in German), doi: 10.1007/BF01341708
  • [1a] D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689
  • [2] L.D. Faddeev, L.A. Takhtajan, LOMI 109, 134 (1981) (in Russian)
  • [2a] L.D. Faddeev, L.A. Takhtajan, J. Sov. Math. 24, 241 (1984)), doi: 10.1007/BF01087245
  • [3] L.A. Faddeev, arXiv: hep-th/9605187v1
  • [4] J. Milewski, G. Banaszak, T. Lulek, M. Labuz, Physica B 406, 520 (2011), doi: 10.1016/j.physb.2010.11.027
  • [5] J. Milewski, B. Lulek, T. Lulek, M. Łabuz, R. Stagraczyński, Physica B 434, 14 (2014), doi: 10.1016/j.physb.2013.10.041
  • [6] J. Milewski, G. Banaszak, T. Lulek, M. Łabuz, R. Stagraczyński, Open Syst. Inf. Dyn. 19, 1250012 (2012), doi: 10.1142/S1230161212500126
  • [7] T. Deguchi, P.R. Giri, arXiv: 1408.7030, 2014
  • [8] P.R. Giri, T. Deguchi, arXiv: 1411.5839, 2014

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n222kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.