PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 216-218
Article title

Combinatorics of Lax Objects in Bethe Ansatz

Content
Title variants
Languages of publication
EN
Abstracts
EN
Algebraic Bethe Ansatz, also known as quantum inverse scattering method, is a consistent tool based on the Yang-Baxter equation which allows to construct Bethe Ansatz exact solutions. One of the most important objects in algebraic Bethe Ansatz is a monodromy matrix M̂, which is defined as an appropriate product of so-called Lax operators L̂ (local transition operators). Monodromy matrix as well as each of Lax operators acts in the tensor product of the quantum space 𝓗 with an auxiliary space ℂ². Thus M̂, when written in the standard basis of auxiliary space, consists of four elements Â, B̂, Ĉ, D̂, which are the operators acting in quantum space 𝓗, where B̂ and Ĉ are step operators and the remaining generate all constants of motion. In this work a consistent method of construction of the Bethe Ansatz eigenstates in terms of objects â, b̂, ĉ, d̂ i.e. matrix elements of the Lax operators in the auxiliary space is proposed.
Keywords
EN
Publisher

Year
Volume
128
Issue
2
Pages
216-218
Physical description
Dates
published
2015-08
Contributors
  • Rzeszów University of Technology, The Faculty of Mathematics and Applied Physics, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
References
  • [1] H. Bethe, Z. Phys. 71, 205 (1931) (in German), doi: 10.1007/BF01341708
  • [1a] D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689
  • [2] L.D. Faddeev, L.A. Takhtajan, LOMI 109, 134 (1981) (in Russian)
  • [2a] L.D. Faddeev, L.A. Takhtajan, J. Sov. Math. 24, 241 (1984)), doi: 10.1007/BF01087245
  • [3] L.A. Faddeev, arXiv: hep-th/9605187v1
  • [4] J. Milewski, G. Banaszak, T. Lulek, M. Labuz, Physica B 406, 520 (2011), doi: 10.1016/j.physb.2010.11.027
  • [5] J. Milewski, B. Lulek, T. Lulek, M. Łabuz, R. Stagraczyński, Physica B 434, 14 (2014), doi: 10.1016/j.physb.2013.10.041
  • [6] J. Milewski, G. Banaszak, T. Lulek, M. Łabuz, R. Stagraczyński, Open Syst. Inf. Dyn. 19, 1250012 (2012), doi: 10.1142/S1230161212500126
  • [7] T. Deguchi, P.R. Giri, arXiv: 1408.7030, 2014
  • [8] P.R. Giri, T. Deguchi, arXiv: 1411.5839, 2014
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n222kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.