Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
We introduce a model for a multiband topological superconductor with two orbitals per lattice site, in two spatial dimensions. Concentrating on the Andreev reflection problem, the appropriate wave function matching conditions for an interface with a normal single-band metal were previously derived in the framework of a quantum waveguide theory. This theory retrieves the correct number of Majorana fermion states as predicted by the topological index. We obtain the differential conductance as a function of bias voltage, which displays the contribution of the Majorana fermions. Interface disorder is also considered. By varying band structure parameters, topological transitions can be induced, whereby the number of the Majorana modes varies. We calculate the effect of such transitions on the differential conductance.
Discipline
- 73.20.-r: Electron states at surfaces and interfaces
- 71.10.Li: Excited states and pairing interactions in model systems
- 74.70.-b: Superconducting materials other than cuprates(for cuprates, see 74.72.-h; for superconducting films, see 74.78.-w)
- 71.10.Pm: Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.)(for anyon mechanism in superconductors, see 74.20.Mn)
- 71.10.Fd: Lattice fermion models (Hubbard model, etc.)
- 74.45.+c: Proximity effects; Andreev reflection; SN and SNS junctions
- 74.20.Rp: Pairing symmetries (other than s-wave)
Journal
Year
Volume
Issue
Pages
210-212
Physical description
Dates
published
2015-08
Contributors
author
- CFIF, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
author
- CFIF, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Departamento de Física, Universidade de Évora, P-7000-671, Évora, Portugal
- Beijing Computational Science Research Center, Beijing 100089, China
author
- CFIF, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Beijing Computational Science Research Center, Beijing 100089, China
References
- [1] M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010), doi: 10.1103/RevModPhys.82.3045
- [2] X.-L. Qi, S.-C Zhang, Rev. Mod. Phys. 83, 1057 (2011), doi: 10.1103/RevModPhys.83.1057
- [3] J. Alicea, Rep. Prog. Phys. 75, 076501 (2012), doi: 10.1088/0034-4885/75/7/076501
- [4] M.A.N. Araújo, E.V. Castro, P.D. Sacramento, Phys. Rev. B 87, 085109 (2013), doi: 10.1103/PhysRevB.87.085109
- [5] M.A.N. Araújo, P.D. Sacramento, Phys. Rev. B 79, 174529 (2009), doi: 10.1103/PhysRevB.79.174529
- [6] M.A.N. Araújo, P.D. Sacramento, J. Phys. Conf. Series 200, 012008 (2010), doi: 10.1088/1742-6596/200/1/012008
- [7] G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev B 25, 4515 (1982), doi: 10.1103/PhysRevB.25.4515
- [8] A.C. Silva, M.A.N. Araújo, P.D. Sacramento, Europhys. Lett. 110 37008 (2015), doi: 10.1209/0295-5075/110/37008
- [9] Y. Hatsugai, T. Fukui, H. Aoki, Phys. Rev. B 74, 205414 (2006), doi: 10.1103/PhysRevB.74.205414
- [10] S. Kashiwaya, Y. Tanaka, M. Koyanagi, K. Kajimura, Phys. Rev B 53, 2667 (1996), doi: 10.1103/PhysRevB.53.2667
- [11] A. Yamakage, K. Yada, M. Sato, Y. Tanaka, Phys. Rev B 85, 180509(R) (2012), doi: 10.1103/PhysRevB.85180509
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n220kz