PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 204-207
Article title

Numerical Stability of Solution of Recursion Relation for Ideal Quantum Gases Containing Finite Number of Harmonically Trapped Particles

Content
Title variants
Languages of publication
EN
Abstracts
EN
The numerical stability of the solution of recursion relation for mean occupation numbers derived by Schönhammer for ideal Fermi gas trapped in 1D harmonic potential is studied. In low temperature region there exists a solution of this recursion relation. In high temperature region the iteration becomes unstable. In low and high temperature regions with growing number of particles the region of numerical instability diminishes.
Keywords
EN
Contributors
  • Retired from Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Rzeszów, Poland
author
  • Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, PL-35959 Rzeszów, Poland
References
  • [1] L.P. Pitaevskii, S. Stringari, Einstein Condensation, Clarendon, Oxford 2003.
  • [2] L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Clarendon, Oxford 2003.
  • [3] S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008), doi: 10.1103/RevModPhys.80.1215
  • [4] R. Denton, B. Muhlschlegel, D.J. Scalapino, Phys. Rev. B 7, 3589 (1973), doi: 10.1103/PhysRevB.7.3589
  • [5] J. Arnaud, J.M. Boé, L. Chusseau, F. Philippe, Am. J. Phys. 67, 215 (1999), doi: 10.1119/1.19228
  • [6] J. Arnaud, L. Chusseau, F. Philippe, Phys. Rev. B 62, 13482 (2000), doi: 10.1103/PhysRevB.62.13482
  • [7] S. Grossmann, M. Holthaus, Phys. Rev. E 54, 3495 (1996), doi: 10.1103/PhysRevE.54.3495
  • [8] S. Grossmann, M. Holthaus, Chaos Solitons Fractals 10, 795 (1999), doi: 10.1016/S0960-0779(98)00029-0
  • [9] J.-M. Boé, F. Philippe, J. Comb. Theor. Series A 92, 173 (2000), doi: 10.1006/jcta.2000.3059
  • [10] A. Kubasiak, J.K. Korbicz, J. Zakrzewski, M. Lewenstein, Europhys. Lett. 72, 506 (2005), doi: 10.1209/epl/i2005-10278-8
  • [11] H.-J. Schmidt, J. Schnack, Am. J. Phys. 70, 53 (2002), doi: 10.1119/1.1412643
  • [12] M. Ligare, Am. J. Phys. 66, 185 (1998), doi: 10.1119/1.18843
  • [13] M. Ligare, Am. J. Phys. 70, 76 (2002), doi: 10.1119/1.1412649
  • [14] M. Holthaus, E. Kalinowski, K. Kirsten, Ann. Phys. (New York) 270, 198 (1998), doi: 10.1006/aphy.1998.5852
  • [15] M.N. Tran, M.V.N. Murthy, R.K. Badhuri, Phys. Rev. E 63, 031105 (2001), doi: 10.1103/PhysRevE.63.031105
  • [16] F. Philippe, J. Arnoud, L. Chusseau, arXiv: math-ph/0211029v1, 2002
  • [17] K. Schönhammer, Am. J. Phys. 68, 1032 (2000), doi: 10.1119/1.1286116
  • [18] R. Shankar, Principles of Quantum Mechanics, Kluwer Academic, Plenum Publ., New York 2004
  • [19] W.J. Mullin, J.P. Fernandez, Am. J. Phys. 71, 661 (2003), doi: 10.1119/1.1544520
  • [20] E.D. Trifonov, S.N. Zagoulaev, Phys.-Usp. 53, 83 (2010), doi: 10.3367/UFNe.0180.201001e.0089
  • [21] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York 1976
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n218kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.