Title variants
Languages of publication
Abstracts
The numerical stability of the solution of recursion relation for mean occupation numbers derived by Schönhammer for ideal Fermi gas trapped in 1D harmonic potential is studied. In low temperature region there exists a solution of this recursion relation. In high temperature region the iteration becomes unstable. In low and high temperature regions with growing number of particles the region of numerical instability diminishes.
Discipline
Journal
Year
Volume
Issue
Pages
204-207
Physical description
Dates
published
2015-08
Contributors
author
- Retired from Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, Rzeszów, Poland
author
- Faculty of Mathematics and Applied Physics, Rzeszów University of Technology, al. Powstańców Warszawy 6, PL-35959 Rzeszów, Poland
References
- [1] L.P. Pitaevskii, S. Stringari, Einstein Condensation, Clarendon, Oxford 2003.
- [2] L.P. Pitaevskii, S. Stringari, Bose-Einstein Condensation, Clarendon, Oxford 2003.
- [3] S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 80, 1215 (2008), doi: 10.1103/RevModPhys.80.1215
- [4] R. Denton, B. Muhlschlegel, D.J. Scalapino, Phys. Rev. B 7, 3589 (1973), doi: 10.1103/PhysRevB.7.3589
- [5] J. Arnaud, J.M. Boé, L. Chusseau, F. Philippe, Am. J. Phys. 67, 215 (1999), doi: 10.1119/1.19228
- [6] J. Arnaud, L. Chusseau, F. Philippe, Phys. Rev. B 62, 13482 (2000), doi: 10.1103/PhysRevB.62.13482
- [7] S. Grossmann, M. Holthaus, Phys. Rev. E 54, 3495 (1996), doi: 10.1103/PhysRevE.54.3495
- [8] S. Grossmann, M. Holthaus, Chaos Solitons Fractals 10, 795 (1999), doi: 10.1016/S0960-0779(98)00029-0
- [9] J.-M. Boé, F. Philippe, J. Comb. Theor. Series A 92, 173 (2000), doi: 10.1006/jcta.2000.3059
- [10] A. Kubasiak, J.K. Korbicz, J. Zakrzewski, M. Lewenstein, Europhys. Lett. 72, 506 (2005), doi: 10.1209/epl/i2005-10278-8
- [11] H.-J. Schmidt, J. Schnack, Am. J. Phys. 70, 53 (2002), doi: 10.1119/1.1412643
- [12] M. Ligare, Am. J. Phys. 66, 185 (1998), doi: 10.1119/1.18843
- [13] M. Ligare, Am. J. Phys. 70, 76 (2002), doi: 10.1119/1.1412649
- [14] M. Holthaus, E. Kalinowski, K. Kirsten, Ann. Phys. (New York) 270, 198 (1998), doi: 10.1006/aphy.1998.5852
- [15] M.N. Tran, M.V.N. Murthy, R.K. Badhuri, Phys. Rev. E 63, 031105 (2001), doi: 10.1103/PhysRevE.63.031105
- [16] F. Philippe, J. Arnoud, L. Chusseau, arXiv: math-ph/0211029v1, 2002
- [17] K. Schönhammer, Am. J. Phys. 68, 1032 (2000), doi: 10.1119/1.1286116
- [18] R. Shankar, Principles of Quantum Mechanics, Kluwer Academic, Plenum Publ., New York 2004
- [19] W.J. Mullin, J.P. Fernandez, Am. J. Phys. 71, 661 (2003), doi: 10.1119/1.1544520
- [20] E.D. Trifonov, S.N. Zagoulaev, Phys.-Usp. 53, 83 (2010), doi: 10.3367/UFNe.0180.201001e.0089
- [21] N.W. Ashcroft, N.D. Mermin, Solid State Physics, Holt, Rinehart and Winston, New York 1976
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n218kz