PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 190-192
Article title

Paths vs. Winding Numbers for the Two-Magnon Sector of the XXX Heisenberg Magnet

Authors
Content
Title variants
Languages of publication
EN
Abstracts
EN
Bethe Ansatz is the famous method of determination of eigenstates and eigenenergies for a wide range of quantum problems, e.g. for the Heisenberg XXX s=1/2 model. The Bethe equations applied to solve the problem of N nodes and r overturned spins on a magnetic chain are labeled by sets of winding numbers {n_i}, however the condition for admissible sets give an overcomplete number of results. On the other hand, combinatorial objects, so called "paths", give the exact number of eigenvectors for the problem described by (N,r) values. The paper presents the method of determining the set of winding numbers from the appropriate path for the sector of r=2 spin deviations.
Keywords
EN
Contributors
author
  • Department of Theoretical Physics, Faculty of Mathematics and Natural Sciences, University of Rzeszów, S. Pigonia 1, 35-310 Rzeszów, Poland
References
  • [1] A.N. Kirillov, R. Sakamoto, J. Phys. A Math. Theor. 47, 205207 (2014), doi: 10.1088/1751-8113/47/20/205207
  • [2] W. Hao, R.I. Nepomechie, A.J. Sommese, Phys. Rev. E 88, 052113 (2013), doi: 10.1103/PhysRevA.88.052113
  • [3] D. Jakubczyk, Rep. Math. Phys. 72, 379 (2013), doi: 10.1016/S0034-4877(14)60025-2
  • [4] W.J. Caspers, Spin Systems, World Sci., Singapore 1989, doi: 10.1142/0767
  • [5] J. Milewski, G. Banaszak, T. Lulek, M. Łabuz, R. Stagraczyński, OSID 19, 1250012 (2012), doi: 10.1142/S1230161212500126
  • [6] G. Banaszak, B. Lulek, T. Lulek, J. Milewski, B. Szydło, Rep. Math. Phys. 71, 205 (2013), doi: 10.1016/S0034-4877(13)60030-0
  • [7] A. Lascoux, B. Lecrerc, J.-Y. Thibon, in: Algebraic Combinatorics on Words, Ed. M. Lothaire, Univ. Press, Cambridge 2001, doi: 10.1017/CBO9781107326019
  • [8] B. Lulek, T. Lulek, M. Labuz, R. Stagraczynski, Physica B 405, 2654 (2010), doi: 10.1016/j.physb.2010.03.043
  • [9] A.N. Kirillov, A. Schilling, M. Shimozono, Sel. Math. N.S. 8, 67 (2002), doi: 10.1007/s00029-002-8102-6
  • [10] P. Jakubczyk, A. Wal, D. Jakubczyk, T. Lulek, Comp. Phys. Comm. 183, 1354 (2012), doi: 10.1016/j.cpc.2012.01.025
  • [11] W.J. Caspers, A. Wal, M. Łabuz, M. Kuźma, T. Lulek, J. Math. Phys. 45, 391 (2004), doi: 10.1063/1.1623614
  • [12] S. Dasmahapatra, O. Foda, Int. J. Mod. Phys. 38, 1041 (1997), doi: 10.1142/S0217751X98000214
  • [13] S.O. Warnaar, J. Stat. Phys. 82, 657 (1996), doi: 10.1007/FBF02179790
  • [14] T.A. Welsh, Memoirs AMS 175, 827 (2005), doi: 10.1090/memo/0827
  • [15] H. Bethe, Z. Phys. 71, 205 (1931) (in German), doi: 10.1007/BF01341708
  • [15a] D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689), doi: 10.1142/9789812796523
  • [16] M. Karbach, G. Müller, Comp. Phys. 11, 36 (1997), doi: 10.1063/1.4822511
  • [17] W.J. Caspers, M. Łabuz, A. Wal, M. Kuźma, T. Lulek, J. Phys. A Math. Gen. 36, 5369 (2003), doi: 10.1088/0305-4470/36/20/302
  • [18] T. Lulek, B. Lulek, D. Jakubczyk, P. Jakubczyk, Physica B Phys. Condens. Matter 382, 162 (2006), doi: 10.1016/j.physb.2006.02.015
  • [19] T. Lulek, Banach Center Publ. 78, 231 (2007), doi: 10.4064/bc78-0-17
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n214kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.