PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 176-178
Article title

Matrix Representation of Constants of Motion for One-Dimensional Heisenberg Magnet

Content
Title variants
Languages of publication
EN
Abstracts
EN
We demonstrate an exact diagonalization of the one-dimensional Heisenberg magnet in terms of algebraic Bethe Ansatz. We point out, by a polynomial expansion of the transfer matrix with respect to spectral parameter, a complete set of observables for classification of all eigenstates. We introduce an application of our approach on the example of the Heisenberg magnet consisting of four qubits, including its constants of motion, density matrices and complete classification of eigenstates.
Keywords
EN
Year
Volume
128
Issue
2
Pages
176-178
Physical description
Dates
published
2015-08
References
  • [1] R.J. Baxter, Ann. Phys. 70, 323 (1972), doi: 10.1016/0003-4916(72)90270-9
  • [2] B. Sutherland, J. Math. Phys. 11, 3183 (1970), doi: 10.1063/1.1665111
  • [3] L.D. Faddeev, L.A. Takhtajan, J. Sov. Math. 24, 241 (1984), doi: 10.1007/BF01087245
  • [4] P.A.M. Dirac, Phys. Today 11, 32 (1958), doi: 10.1063/1.3062610
  • [5] H. Bethe, Z. Phys. 71, 205 (1931) (in German; English translation in: D.C. Mattis, The Many-Body Problem, World Sci., Singapore 1993, p. 689), doi: 10.1007/BF01341708
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n210kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.