PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 2 | 166-169
Article title

Measuring of Electric Parameters of Graphene in Presence of Temperature Gradient

Content
Title variants
Languages of publication
EN
Abstracts
EN
Graphene is one of the most promising materials for application in electronics. It has been recently discovered that on certain substrates graphene is characterized by a rather strong spin-orbit interaction, which is valuable to spintronics applications. In this paper we present an application of a system for measuring of graphene's electrical parameters. The idea of a measuring system originates from the measurements of the pyroelectric coefficient of ferroelectric samples. After a simple modification the system can be used for various experiments related to the determination of electric response of samples exposed to a temperature gradient. Test measurements of monolayer graphene samples and their thermoelectric response are presented.
Keywords
EN
Year
Volume
128
Issue
2
Pages
166-169
Physical description
Dates
published
2015-08
References
  • [1] Y.C. Lan, A.J. Minnich, G. Chen, Z.F. Ren, Adv. Funct. Mater. 20, 357 (2010), doi: 10.1002/adfm.200901512
  • [2] M. Inglot, A. Dyrdal, V.K. Dugaev, J. Barnaś, Phys. Rev. B 91, 115410 (2015), doi: 10.1103/PhysRevB.91.115410
  • [3] M.I. Katsnelson, K.S. Novoselov, A.K. Geim, Nat. Phys. 2, 620 (2006), doi: 10.1038/nphys384
  • [4] M. Inglot, V.K. Dugaev, E.Ya. Sherman, J. Barnaś, Phys. Rev. B 89, 155411 (2014), doi: 10.1103/PhysRevB.00.005400
  • [5] F. Donati, L. Gragnaniello, A. Cavallin, F.D. Natterer, Q. Dubout, M. Pivetta, F. Patthey, J. Dreiser, C. Piamonteze, S. Rusponi, H. Brune, Phys. Rev. Lett. 113, 177201 (2014), doi: 10.1103/PhysRevLett.113.177201
  • [6] E.I. Rashba, Phys. Rev. B 79, 161409 (2009), doi: 10.1103/PhysRevB.79.161409
  • [7] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005), doi: 10.1038/nature04233
  • [8] Z. Aksamija, I. Knezevic, Phys. Rev. B 90, 035419 (2014), doi: 10.1103/PhysRevB.90.035419
  • [9] Z.G. Fthenakis, Z. Zhu, D. Tomanek, Phys. Rev. B 89, 125421 (2014), doi: 10.1103/PhysRevB.89.125421
  • [10] L. Liang, E. Cruz-Silva, E. Costa Girão, V. Meunier, Phys. Rev. B 86, 115438 (2012), doi: 10.1103/PhysRevB.86.115438
  • [11] S. Yi gen, V. Tayari, J.O. Island, J.M. Porter, A.R. Champagne, Phys. Rev. B 87, 241411(R) (2013), doi: 10.1103/PhysRevB.87.241411
  • [12] D. Dragoman, M. Dragoman, Appl. Phys. Lett. 91, 203116 (2007), doi: 10.1063/1.2814080
  • [13] D. Wang, J. Shi, Phys. Rev. B 83, 113403 (2011), doi: 10.1103/PhysRevB.83.113403
  • [14] T. Lofwander, M. Fogelstrom, Phys. Rev. B 76, 193401 (2007), doi: 10.1103/PhysRevB.76.193401
  • [15] Y.M. Zuev, W. Chang, P. Kim, Phys. Rev. Lett. 102, 096807 (2009), doi: 10.1103/PhysRevLett.102.096807
  • [16] X.Z. Yan, C.S. Ting, Phys. Rev. B 80, 165423 (2011), doi: 10.1103/PhysRevB.80.165423
  • [17] M.I. Alomar, D. Sánchez, Phys. Rev. B 89, 115422 (2014), doi: 10.1103/PhysRevB.89.115422
  • [18] J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Science 328, 213 (2010), doi: 10.1126/science.1184014
  • [19] P. Wei, W. Bao, Y. Pu, C.N. Lau, J. Shi, Phys. Rev. Lett. 102, 166808 (2009), doi: 10.1103/PhysRevLett.102.166808
  • [20] J. Borysiuk, R. Bożek, W. Strupiński, A. Wysmołek, K. Grodecki, R. Stępniewski, J.M. Baranowski, J. Appl. Phys. 105, 023503 (2009), doi: 10.1063/1.3065481
  • [21] W. Strupinski, K. Grodecki, A. Wysmolek, R. Stepniewski, T. Szkopek, P.E. Gaskell, Nano Lett. 11, 1786 (2011), doi: 10.1021/nl200390e
  • [22] M. Trybus, W. Proszak, B. Woś, Infrared Phys. Technol. 61, 81 (2013), doi: 10.1016/j.infrared.2013.07.013
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n207kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.