Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 1 | 123-127
Article title

Viscosity Measurement Using Optical Tracking of Free Fall in Newtonian Fluid

Title variants
Languages of publication
This paper presents a novel method in viscosity assessment using a tracking of the ball moving in Newtonian fluid. The movement of the ball is assimilated to a free fall within a tube containing liquid of whose we want to measure a viscosity. In classical measurement, height of fall is estimated directly by footage where accuracy is not really considered. Falling ball viscometers have shown, on the one hand, a limit in the ball falling height measuring, on the other hand, a limit in the accuracy estimation of velocity and therefore a weak precision on the viscosity calculation of the fluids. Our technique consist to measure the fall height by taking video sequences of the ball during its fall and thus estimate its terminal velocity which is an important parameter for cinematic velocity computing, using the Stokes formalism. The time of fall is estimated by cumulating time laps between successive video sequences which mean that we can finally estimate the cinematic viscosity of the studied fluid.
Physical description
  • Laboratoire de Géodésie Spatiale, Centre des Techniques Spatiales, BP 13 rue de Palestine Arzew 31200 Oran, Algeria
  • Laboratoire LAAR - Faculté de Physique, Département de Technologie des Materiaux, Université des Sciences et de la Technologie d'Oran USTO-MB, BP 1505, El M'Naouer 31000 Oran, Algeria
  • Laboratoire LAAR - Faculté de Physique, Département de Technologie des Materiaux, Université des Sciences et de la Technologie d'Oran USTO-MB, BP 1505, El M'Naouer 31000 Oran, Algeria
  • Faculté des Sciences et de la Technologie, Université de Khemis Miliana - UKM, Route de Theniet El Had 44225 Khemis Miliana, Algeria
  • [1] M. Fowler, Viscosity Introduction: Friction at the Molecular Level, Lectures on Fluids, University of Virginia Publ., 2007
  • [2] Comsol, Terminal Falling Velocity of a Sand Grain Solved with Comsol Multiphysics 3.5a, Comsol Multiphysics Software Demonstration, 2010
  • [3] S. Gillet, Viscosity: Elementary Course, Académie des Sciences (France), Elsevier Masson, 2008 (in French)
  • [4] volumique des matériaux (Volume Mass of Materials)
  • [5] N. Ashrafi, Appl. Rheol. 22, 34203 (2012), doi: 10.3933/ApplRheol-22-34203
  • [6] J. Chaurette, Fiberglass Pipe Handbook, Design Incorporation, SPI Composites Institute, Montreal 2003
  • [7] A. Marcinkowska-Gapinska, P. Kowal, Acta Phys. Pol. A 125, A-24 (2014), doi: 10.12693/APhysPolA.125.A-24
  • [8] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeil, Image Vis. Comput. 1, 133 (1983)
  • [9] Instruction Manual, Description of the function elements and measuring ranges of the measuring instrument, for the Viscotester VT550 (2009)
  • [10] A. Lefebvre, B. Maury, Apparent Viscosity of a mixture of a Newtonian Fluid and Interacting Particles, Laboratoire de Mathématiques, Université Paris-Sud, 2005, doi: 10.1016/j.crme.2005.10.007
  • [11] A. Kushima, X. Lin, J. Li, X.F. Qian, J. Eapen, J.C. Mauro, P. Diep, S. Yip, J. Chem. Phys. 131, 164505 (2009), doi: 10.1063/1.3243854
  • [12] F.B. Smith, F.G. Fowkes, A. Rumley, A.J. Lee, Eur. Heart J. 14, 597 (1993), doi: 10.1093/eurheartj/14.5.597
  • [13] J.D. Tice, A.D. Lyon, R.F. Ismagilov, Anal. Chim. Acta 504, 73 (2004), doi: 10.1016/S0003-2670(03)00673-1
  • [14] E. Szwajczak, R. Stragaczyński, H. Herba, J. Jadżyn, Acta Phys. Pol. A 115, 905 (2009)
  • [15] T. Schweizer, Appl. Rheol. 14, 197 (2004), doi: 10.3933/ApplRheol-14-197
  • [16] J. Russ, The Image Processing Handbook, 6th ed., North Carolina State University Materials Science and Engineering, CRC Press is an imprint of the Taylor and Francis Group, 2011
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.