Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 1 | 59-63

Article title

Ac Conductivity Measurement of Cd_{5}Se_{95-x}Zn_{x} Chalcogenide Semiconductor Using Correlated Barrier Hopping Model

Content

Title variants

Languages of publication

EN

Abstracts

EN
Cd_{5}Se_{95-x}Zn_{x} (x=0, 2, 4, 6) chalcogenide semiconductors were prepared by conventional melt-quenching and were characterized by X-ray diffraction, scanning electron microscopy, and Fourier transform infrared studies. Ac conductivity of Cd_{5}Se_{95-x}Zn_{x} chalcogenide semiconductor has been investigated in the frequency range of 1 kHz-1 MHz and in the temperature range of 290-370 K. The analysis of the experimental results indicates that the ac conductivity is temperature, frequency and concentration dependent. Ac conductivity is found to obey the power law ω^{s} where s < 1. A strong dependence of ac conductivity and exponent s can be well interpreted in terms of correlated barrier hopping model. The maximum barrier height W_{m} were calculated from the results of dielectric loss according to the Guintini equation that agree with the theory of hopping of charge carriers over potential barrier as suggested by Elliot in case of chalcogenide semiconductors.

Keywords

EN

Year

Volume

128

Issue

1

Pages

59-63

Physical description

Dates

published
2015-7
received
2014-08-09
(unknown)
2015-05-14

Contributors

author
  • Department of Physics, Jamia Millia Islamia, New Delhi 110025, India
author
  • Department of Physics, Jamia Millia Islamia, New Delhi 110025, India

References

  • [1] A. Onozuka, O. Oda, J. Non-Cryst Solids 103, 289 (1988), doi: 10.1016/0022-3093(88)90207-4
  • [2] S. Kumar, M. Husain, M. Zulfequar, Physica B 387, 400 (2007), doi: 10.1016/j.physb.2006.04.036
  • [3] H. Fritzsche, J. Phys. Chem. Solids 68, 878 (2007), doi: 10.1016/j.jpcs.2007.01.017
  • [4] P. Pattanayak, S. Asokan, Europhys. Lett. 75, 778 (2006), doi: 10.1209/epl/i2006-10173-x
  • [5] H.F. Hamann, M.O. Boyle, Y.C. Martin, M. Rooks, H.K. Wickramasinghe, Nat. Mater. 5, 383 (2006), doi: 10.1038/nmat1627
  • [6] V. Balitska, O. Shpotyuk, H. Altenburg, J. Non-Cryst. Solids 352, 4809 (2006), doi: 10.1016/j.jnoncrysol.2006.01.111
  • [7] A. Ganjoo, H. Jain, C. Yu, R. Song, J.V. Ryan, J. Irudayaraj, Y.J. Ding, C.G. Pantano, J. Non-Cryst. Solids 352, 584 (2006), doi: 10.1016/j.jnoncrysol.2005.12.010
  • [8] S.A. Khan, M. Zulfequar, M. Hussain, Solid State Commun. 123, 463 (2002), doi: 10.1016/S0038-1098(02)00147-3
  • [9] M.A. Majeed Khan, M. Zulfequar, M. Hussain, J. Opt. Mater. 22, 21 (2003), doi: 10.1016/S0925-3467(02)00234-3
  • [10] P. Sharma, S.C. Katyal, Physica B 403, 3667 (2008), doi: 10.1016/j.physb.2008.06.009
  • [11] E. Marquez, T. Wagner, J.M. Gonzalez-Leal, A.M. Bernal-Olive, R. Prieto-Aleton, R. Jimenez-Garay, P.J.S. Ewen, J. Non-Cryst. Solids 274, 62 (2000), doi: 10.1016/S0022-3093(00)00184-8
  • [12] E. Sagbo, D. Houphouet-Boigny, R. Eholic, J.C. Ju-mas, J. Olivier-Fourcadu, M. Mouriu, J. Rivet, J. Solid State Chem. 113, 145 (1994), doi: 10.1006/jssc.1994.1353
  • [13] A.A. Simashkevich, S.D. Shutov, Semiconductor (USA) 28, 80 (1994)
  • [14] A. Vidourek, L. Tichy, M. Vlcek, Mater. Lett. (Netherlands) 22, 59 (1995), doi: 10.1016/0167-577X(94)00225-8
  • [15] F. Salam, J.C. Giuntini, S.S. Soulayman, J.V. Zanchetta, Appl. Phys. A Mater. Sci. Process (Germany) 60, 309 (1995), doi: 10.1007/BF01538409
  • [16] A. Daoudi, J.C. Levet, M. Potel, H. Noel, Mater. Res. Bull. (USA) 31, 1213 (1996), doi: 10.1016/0025-5408(96)00113-4
  • [17] A.N.R. Long, Adv. Phys. 31, 553 (1981), doi: 10.1080/00018738200101418
  • [18] S.R. Elliott, Adv. Phys. 36, 135 (1987), doi: 10.1080/00018738700101971
  • [19] A.K Jonscher, Nature 267, 673 (1977), doi: 10.1038/267673a0
  • [20] S.R. Elliott, Philos. Mag. B 36, 1291 (1977), doi: 10.1080/14786437708238517
  • [21] A.R. Long, Adv. Phys. 31, 553 (1982), doi: 10.1080/00018738200101418
  • [22] A.M. Farid, H.E. Atyia, N.A. Hegab, Vacuum 80, 284 (2005), doi: 10.1016/j.vacuum.2005.05.003
  • [23] R.S. Kundu, K.L. Bhatia, N. Kishore, Philos. Mag. B 72, 513 (1995), doi: 10.1080/13642819508239102
  • [24] J.C. Guintini, J.V. Zanchetta, D. Jullien, R. Enolie, P. Houenou, J. Non-Cryst. Solids 45, 57 (1981), doi: 10.1016/0022-3093(81)90089-2
  • [25] G.E. Pike, Phys. Rev. B 6, 1572 (1972), doi: 10.1103/PhysRevB.6.1572
  • [26] V.K. Bhatnagar, K.L. Bhatia, J. Non-Cryst. Solids 119, 214 (1990), doi: 10.1016/0022-3093(90)90845-D
  • [27] B.K. Chaudhuri, J.K. Chaudhuria, K.K. Som, J. Phys. Chem. Solids 50, 1149 (1989), doi: 10.1016/0022-3697(89)90024-3
  • [28] L.G. Austin, N.F. Mott, Adv. Phys. 18, 41 (1969), doi: 10.1080/00018736900101267
  • [29] C. Angell, Annu. Rev. Phys. Chem. 43, 693 (1992), doi: 10.1146/annurev.pc.43.100192.003401
  • [30] F.A. Abdel Wahab, M. Abdel-Baki, J. Non-Cryst. Solids 355, 2239 (2009), doi: 10.1016/j.jnoncrysol.2009.07.028
  • [31] H.E. Atyia, Vacuum 81, 590 (2007), doi: 10.1016/j.vacuum.2006.07.011
  • [32] M.M. Abdel-Aziz, M.A. Afifi, H.H. Labib, E.G. El-Metwally, Acta Phys. Pol. A 98, 393 (2000) http://przyrbwn.icm.edu.pl/APP/PDF/98/a098z4p09.pdf
  • [33] N.A. Hegab, M.A. Afifi, H.E. Atyia, M.I. Ismael, Acta Phys. Pol. A 119, 416 (2011) http://przyrbwn.icm.edu.pl/APP/PDF/119/a119z3p23.pdf
  • [34] N.A. Hegab, A.E. Bekheet, M.A. Afifi, L.A. Wahaba, H.A. Shehata, J. Ovonic Res. 3, 71 (2007)
  • [35] N.A. Hegab, H.M. El-Mallah, Acta Phys. Pol. A 116, 1048 (2009) http://przyrbwn.icm.edu.pl/APP/PDF/116/a116z613.pdf
  • [36] J.C. Guintini, J.V. Zandieha, J. Non-Cryst Solids 34, 57 (1979), doi: 10.1016/0022-3093(79)90027-9

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv128n112kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.