PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 128 | 1 | 54-55
Article title

Anisotropy of the Magnetocaloric Effect in the Ni_{49.6}Mn_{27.6}Ga_{22.8} Single Crystal

Content
Title variants
Languages of publication
EN
Abstracts
EN
The magnetocaloric effect anisotropy in the Ni_{49.6}Mn_{27.6}Ga_{22.8} single crystal was investigated. In the examined alloy the structural phase transition and magnetic transition occur at room temperature and around 370 K, respectively. The magnetic entropy change, at those two temperatures, was determined on the basis of isothermal and isofield curves, recorded at fields up to 1200 kA/m (1.5 T) with temperature steps of 2.5 and 5 K. Although the calculated values of magnetic entropy change are relatively small, ≈0.7 J/(kg K), an anisotropy of the magnetocaloric effect is observed with a magnetic field applied along the main crystallographic directions of the single crystal. The magnetic entropy change at the structural phase transition depends on the orientation. The weakest magnetocaloric effect occurs when the field is applied along [1 0 0] direction whereas the highest magnetocaloric effect value is reached along [0 0 1] direction, which is an easy magnetization axis. Such behaviour can be explained with the high magnetocrystalline anisotropy of the martensitic phase. The magnetic entropy change value, at the structural phase transition, obtained for the polycrystalline specimen, is close to that for the [0 0 1] single crystal direction.
Keywords
EN
Publisher

Year
Volume
128
Issue
1
Pages
54-55
Physical description
Dates
published
2015-7
received
2015-02-02
Contributors
author
  • Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
author
  • Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
author
  • Faculty of Material Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
References
  • [1] A. Sozinov, A.A. Likhachev, N. Lanska, K. Ullakko, Appl. Phys. Lett. 80, 1746 (2002), doi: 10.1063/1.1458075
  • [2] J.L. Jin, X.Q. Zhang, G.K. Li, Z.H. Cheng, L. Zheng, Y. Lu, Phys. Rev. B 83, 184431 (2011), doi: 10.1103/PhysRevB.83.184431
  • [3] S.A. Nikitin, K.P. Skokov, Y.S. Koshkid'ko, Y.G. Pastushenkov, T.I. Ivanova, Phys. Rev. Lett. 105, 137205 (2010), doi: 10.1103/PhysRevLett.105.137205
  • [4] R. Wróblewski, K. Sielicki, W. Maziarz, M. Leonowicz, in: 5th IIF-IIR Conf. on Magnetic Refrigeration at Room Temperature Thermag V, Grenoble (France), 2012, p. 199
  • [5] A. Planes, L. Mañosa, M. Acet, in: MRS Fall Meeting, Boston (USA), 2007, p. 1, doi: 10.1088/0953-8984/21/23/233201
  • [6] J.F. Duan, P. Huang, H. Zhang, Y. Long, G. Wu, R. Ye, Y. Chang, F. Wan, J. Magn. Magn. Mater. 309, 96 (2007), doi: 10.1016/j.jmmm.2006.06.017
  • [7] S. Fabbrici, J. Kamarad, Z. Arnold, F. Casoli, A. Paoluzi, F. Bolzoni, R. Cabassi, M. Solzi, G. Porcari, C. Pernechele, F. Albertini, Acta Mater. 59, 412 (2011), doi: 10.1016/j.actamat.2010.09.059
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv128n110kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.