Title variants
Languages of publication
Abstracts
In this paper, the mechanical milling process for various durations was used to generate a homogeneous distribution of 1 wt.% carbon nanotube within Cu powder. Effects of milling time on morphology, microstructure, and microhardness of the powder were studied. The results showed that work hardened Cu-carbon nanotube nanocomposite powder with nanosized grains can be fabricated by the mechanical milling of the elemental materials. The addition of carbon nanotubes accelerated the morphological and microstructural evolution during the mechanical milling and influenced the compressibility of the powder. The compressibility behavior of the powder was analyzed using analytical models and used to estimate the strength of the powder. The nanocomposite compacts were sintered in vacuum and showed the maximum relative density of ≈91% at optimum condition.
Discipline
Journal
Year
Volume
Issue
Pages
1722-1727
Physical description
Dates
published
2015-06
received
2014-10-31
Contributors
author
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh, East Azerbaijan, Iran
author
- Materials and Energy Research Center (MERC), P.O. Box 14155-4777, Tehran, Iran
References
- [1] P. Calvert, Nature 399, 210 (1999), doi: 10.1038/20326
- [2] E.T. Thostenson, Z.F. Ren, T.W. Chou, Compos. Sci. Technol. 61, 1899 (2001), doi: 10.1016/S0266-3538(01)00094-X
- [3] J.P. Salvetat, J.M. Bonard, N.H. Thomson, A.J. Kulik, L. Forro, W. Benoit, L. Zuppiroli, Appl. Phys. A 69, 255 (1999), doi: 10.1007/s003399900114
- [4] M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi, H.S. Kim, Mater. Sci. Eng. A 572, 83 (2013), doi: 10.1016/j.msea.2013.02.039
- [5] A. Maqbool, M.A. Hussain, F.A. Khalid, N. Bakhsh, A. Hussain, M.H. Kim, Mater. Charact. 86, 39 (2013), doi: 10.1016/j.matchar.2013.09.006
- [6] N. Nayan, S.V.S.N. Murty, S.C. Sharma, K.S. Kumar, P.P. Sinha, Mater. Charact. 62, 1087 (2011), doi: 10.1016/j.matchar.2011.07.017
- [7] S.E. Shin, D.H. Bae, Mater. Charact. 83, 170 (2013), doi: 10.1016/j.matchar.2013.05.018
- [8] E. Yoon, D. Lee, B. Park, M.R. Akbarpour, M. Farvizi, H. Kim, Met. Mater. Int. 19, 927 (2013), doi: 10.1007/s12540-013-5004-4
- [9] S.R. Dong, J.P. Tu, X.B. Zhang, Mater. Sci. Eng. A 313, 83 (2001), doi: 10.1016/S0921-5093(01)00963-7
- [10] S.R. Bakshi, D. Lahiri, A. Agarwal, Intl. Mater. Rev. 55, 41 (2010), doi: 10.1179/095066009X12572530170543
- [11] B.J. Kim, S.Y. Oh, H.S. Yun, J.H. Ki, C.J. Kim, S. Baik, B.S. Lim, J. Nanosci. Nanotechnol. 9, 7393 (2009), doi: 10.1166/jnn.2009.1758
- [12] K.T. Kim, S.I. Cha, S.H. Hong, S.H. Hong, Mater. Sci. Eng. A 430, 27 (2006), doi: 10.1016/j.msea.2006.04.085
- [13] A.K. Shukla, N. Nayan, S.V.S.N. Murty, K. Mondal, S.C. Sharma, K.M. George, S.R. Bakshi, Mater. Charact. 84, 58 (2013), doi: 10.1016/j.matchar.2013.07.011
- [14] S.J. Yoo, S.H. Han, W.J. Kim, Carbon 61, 487 (2013), doi: 10.1016/j.carbon.2013.04.105
- [15] G.K. Williamson, W.H. Hall, Acta Metall. 1, 22 (1953), doi: 10.1016/0001-6160(53)90006-6
- [16] M.R. Akbarpour, E. Salahi, F. Alikhani Hesari, A. Simchi, H.S. Kim, Ceram. Int. 40, 951 (2014), doi: 10.1016/j.ceramint.2013.06.091
- [17] R.W. Heckel, Trans. Metall. Soc. AIME 221, 671 (1961)
- [18] R. Panelli, F.A. Filho, Powder Technology 114, 255 (2001), doi: 10.1016/S0032-5910(00)00207-2
- [19] R. Ge, Int. J. Powder. Metall. 27, 211 (1991)
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n628kz