Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1717-1722
Article title

Prediction of Two-Element Cylindrical Electrostatic Lens Parameters Using Dynamic Artificial Neural Network

Title variants
Languages of publication
Two-element cylindrical electrostatic lens systems allowed to control low energy electron or charged particle beam have great importance. In this context, dynamic artificial neural network using nonlinear autoregressive exogenous model has been utilized to predict optimum linear magnification and overall voltage values for these lens designs. The focusing characteristics of electron beam in two-element cylindrical lens systems are investigated with two different nonlinear autoregressive exogenous based artificial neural network models. First artificial neural network model is employed for predicting of voltage ratios of lenses and magnification values. This model interpolates among the object (P) and image positions (Q) and finally finds optimum voltage ratios and magnification values through training dataset. Due to the deviations of electron trajectories in a real lens system, the spherical aberration effects are also taken into account to determine the optimal lens parameters. Therefore, the second artificial neural network model is constructed for predicting spherical aberration coefficients in image point. For each of artificial neural network models, training, test and validation data set are obtained from SIMION 8.1 ion and electron optics software. Artificial neural network model outputs are compared with the SIMION data and very good agreements are found. While artificial neural network is frequently applied in different fields, this is the first study that uses dynamic artificial neural network to predict the parameters of electrostatic lens. It is believed that this pioneering work will be a guide for the future investigations in lens design systems.
  • Department of Computer Engineering, Mehmet Akif Ersoy University, Burdur, Turkey
  • [1] O. Sise, M. Ulu, M. Dogan, Nucl. Instrum. Methods Phys. Res. A 554, 114 (2005), doi: 10.1016/j.nima.2005.08.068
  • [2] O. Sise, N. Okumus, M. Ulu, M. Dogan, J. Electron Spectrosc. Relat. Phenom. 175, 76 (2009), doi: 10.1016/j.elspec.2009.08.004
  • [3] G.E. Chamberlain, Phys. Rev. 155, 46 (1967), doi: 10.1103/physrev.155.46
  • [4] C.J. Kuyatt, J.A. Simpson, Rev. Sci. Instrum. 38, 103 (1967), doi: 10.1063/1.1720492
  • [5] F.H. Read, J. Phys. E 2, 165 (1969), doi: 10.1088/0022-3735/2/2/311
  • [6] F.H. Read, J. Comer, R.E. Imhof, J.N.H. Brunt, E. Harting, J. Electron. Spectrosc. Relat. Phenom. 4, 293 (1974), doi: 10.1016/0368-2048(74)80061-7
  • [7] F.H. Read, A. Adams, J.R. Soto-Montie, J. Phys. E 4, 625 (1971), doi: 10.1088/0022-3735/4/9/001
  • [8] S. Natali, D.D. Chio, C.E.J. Kuyatt, Res. Natl. Bur. Stand. Sec. A 76A, 27 (1972), doi: 10.6028/jres.076a.003
  • [9] K. Spangenberg, L. Field, IEEE Conf. Proc. 30, 138 (1942), doi: 10.1109/JRPROC.1942.234332
  • [10] D.W.O. Heddle, J. Phys. D Appl. Phys. 32, 1447 (1999), doi: 10.1088/0022-3727/32/13/303
  • [11] T. Saito, O.J. Sovers, J. Appl. Phys. 50, 3050 (1979), doi: 10.1063/1.326381
  • [12] O. Sise, M. Ulu, M. Dogan, Nucl. Instrum. Methods Phys. Res. A 573, 329 (2007), doi: 10.1016/j.nima.2007.01.051
  • [13] M.E. Sigman, S.S. Rives, J. Chem. Inf. Comput. Sci. 34, 617 (1994), doi: 10.1021/ci00019a021
  • [14] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Nat. Med. 7, 673 (2001), doi: 10.1038/89044
  • [15] C. Caetano, J.L. Reis, J. Amorim, M. Lemes, A.D. Pino, Int. J. Quant. Chem. 111, 2732 (2011), doi: 10.1002/qua.22572
  • [16] S. Haykin, Neural Networks and Learning Machines, 3rd ed., Pearson Education, New Jersey 2009
  • [17] E. Munro, J. Vac. Sci. Technol. B 8, 1657 (1990), doi: 10.1116/1.585135
  • [18] M. Szilagyi, IEEE Conf. Proc. 73, 412 (1985), doi: 10.1109/proc.1985.13165
  • [19] T. P. Cavalcanti, J. Instrum. 8, C04003 (2013), doi: 10.1088/1748-0221/8/04/c04003
  • [20] F.A. Ali, Int. J. Adv. Comp. Techn. 2, 66 (2010), doi: 10.4156/ijact.vol2.issue5.7
  • [21] H. J. Yang, B. P. Roe, J. Zhu, Nucl. Instr. Meth. Phys. Res. A 574, 342 (2007), doi: 10.1016/j.nima.2007.02.081
  • [22] E. Munro, in: Conf. Proc. on Electron Microscopy, Ed. P. Favard, : Société français de microscopie electronique, Paris 1970, p. 55
  • [23] D.W.O. Heddle, Electrostatic Lens Systems, 2nd ed., IOP Press, London 2000, doi: 10.1201/noe0750306973
  • [24] H. Kolanoski, Nucl. Instr. Meth. Phys. Res. A 367, 14 (1995), doi: 10.1016/0168-9002(95)00743-1
  • [25] R. Camattari, V. Guidi Astron. Astrophys. 570, A17 (2014), doi: 10.1051/0004-6361/201424463
  • [26] G. Zhang, B. Eddy Patuwo, M.Y. Hu, Int. J. Forecast. 14, 35 (1998), doi: 10.1016/s0169-2070(97)00044-7
  • [27] R.J. Frank, N. Davey, S.P. Hunt, J. Intell. Robot Syst. 31, 91 (2001), doi: 10.1023/a:1012074215150
  • [28] M.V. Kumar, P. Sampath, S. Suresh, S.N. Omkar, R. Ganguli, Aircraft Eng. Aerosp. Techn. 83, 283 (2011), doi: 10.1108/00022661111159898
  • [29] S.H. Arbain, A.J. Wibowo, Comput. Sci. 8, 1506 (2012), doi: 10.3844/jcssp.2012.1506.1513
  • [30] N. Sipöcz, F.A. Tobiesen, M. Assadi, Appl. Energy 88, 2368 (2011), doi: 10.1016/j.apenergy.2011.01.013
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.