PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1656-1661
Article title

Effect of Mn Doping on the Structural, Optical and Magnetic Properties of SnO_2 Nanoparticles

Content
Title variants
Languages of publication
EN
Abstracts
EN
Undoped and Mn doped SnO_2 prepared by co-precipitation method exhibits nanocrystalline nature with prominent peaks along (110), (101), (211), and (310) planes. All the prepared samples are nanocrystalline with crystallite size lying in the range of 4.8-5.6 nm. The prepared SnO_2 nanoparticles exhibit single tetragonal crystalline phase. The high resolution transmission electron microscopy images show that the particles are nanocrystalline in nature. The composition of the prepared samples have been analyzed using energy dispersive analysis of X-rays spectra. The photoluminescence spectroscopy shows the recombination of electrons in singly occupied oxygen vacancies with photoexcited holes in the valence band. Broad UV emission at 426 nm is observed in photoluminescence. UV-vis absorption spectral studies showed a peak at 385 nm. Magnetic measurements revealed that all the doped samples exhibit room temperature ferromagnetism, which is identified as an intrinsic characteristic obtained on doping. Pure SnO_2 nanoparticles showed diamagnetism, SnO_2 with lower Mn content show larger magnetization and with increasing Mn content the retentivity and coercivity are found to decrease.
Keywords
Contributors
  • Department of Physics, SVS College of Engineering, Coimbatore, India
author
  • Department of Physics, Coimbatore Institute of Technology, Coimbatore, India
  • Department of Physics, Coimbatore Institute of Technology, Coimbatore, India
author
  • Department of Electronics and Instrumentation, Sri Ramakrishna Engineering College, Coimbatore, India
author
  • Department of Physics, Coimbatore Institute of Technology, Coimbatore, India
author
  • Department of Physics, Coimbatore Institute of Technology, Coimbatore, India
References
  • [1] G. Ansari, P. Boroojerdian, S.R. Sainkar, R.N. Karekar, R.C. Aiyer, S.K. Kulkarni, Thin Solid Films 295, 271 (1997), doi: 10.1016/S0040-6090(96)09152-3
  • [2] C.B. Fitzgerald, M. Venkatesan, L.S. Dorneles, R. Gunning, P. Stamenov, J.M.D. Coey, Phys. Rev. B 74, 115307 (2006), doi: 10.1103/PhysRevB.74.115307
  • [3] M.N. Rumyantseva, V.V. Kovalenko, A.M. Gaskov, T. Pagnier, D. Machon, J. Arbiol, J.B. Morante, Sens. Actuat. B Chem 109, 64 (2005), doi: 10.1016/j.snb.2005.03.017
  • [4] L. Broussous, C.V. Santilli, S.H. Pulcinelli, A.F. Craievich, J. Phys. Chem. B 106, 2855 (2002), doi: 10.1021/jp012700b
  • [5] F. Gu, S.F. Wang, M.K. Lu, Y.X. Qi, G.J. Zhou, D. Xu, D.R. Yuan, Inorg. Chem. Commun. 6, 882 (2003), doi: 10.1039/B207963C
  • [6] D. Kotsikau, M. Ivanovskaya, D. Orlik, M. Falasconi, Sens. Actuat. B Chem. 101, 199 (2004), doi: 10.1016/j.snb.2004.02.051
  • [7] S. Suh, Z. Zhang, W. Chu, D.M. Hoffman, Thin Solid Films 345, 240 (1999), doi: 10.1016/S0040-6090(98)01421-7
  • [8] M. Huh, S. Kim, J. Ahn, J. Park, B. Kim, Nanostruct. Mater. 11, 211 (1999), doi: 10.1016/S0965-9773(99)00034-3
  • [9] J.H. He, T.H. Wu, C.L. Hsin, K.M. Li, L.J. Chen, Y.L. Chueh, L.J. Chou, Z.L. Wang, Small 2, 116 (2006), doi: 10.1002/smll.200500210
  • [10] G. Williams, G.S.V. Coles, Mater. Res. Soc. Bull. 24, 25 (1999), doi: 10.1016/S0925-4005(02)00114-4
  • [11] O.A. Fouad, Cryst. Res. Technol. 41, 880 (2006), doi: 10.1002/crat.200510687
  • [12] S.B. Ogale, R.J. Choudhary, J.P. Buban, S.E. Lofland, S.R. Shinde, S.N. Kale, V.N. Kulkarni, J. Higgins, C. Lanci, J.R. Simpson, N.D. Browning, S. Das Sarma, H.D. Drew, R.L. Greene, T. Venkatesan, Phys. Rev. Lett. 91, 077205 (2003), doi: 10.1103/PhysRevLett.91.077205
  • [13] J.M.D. Coey, A.P. Douvalis, C.B. Fitzgerald, M. Venkatesan, Appl. Phys. Lett. 84, 1332 (2004), doi: 10.1063/1.1650041
  • [14] N.H. Hong, J. Sakai, W. Prellier, A. Hassini, J. Phys. Condens. Matter 17, 1697 (2005), doi: 10.1088/0953-8984/17/10/023
  • [15] N.H. Hong, J. Sakai, Physica B 358, 265 (2005), doi: 10.1016/j.physb.2005.01.456
  • [16] N.H. Hong, J. Sakai, N.T. Huong, N. Poirot, A. Ruyter, Phys. Rev. B 72, 045336 (2005), doi: 10.1103/PhysRevB.72.045336
  • [17] N.H. Hong, A. Ruyter, W. Prellier, J. Sakai, N.T. Huong, J. Phys. Condens. Matter 17, 6533 (2005), doi: 10.1088/0953-8984/17/41/022
  • [18] T. Kasuya, Solid State Commun. 8, 1635 (1970), doi: 10.1016/0038-1098(70)90480-1
  • [19] K. Gopinadhan, S.C. Kashyap, D.K. Pandya, S. Chaudhary, J. Appl. Phys. 102, 113513 (2007), doi: 10.1063/1.2817825
  • [20] V.L. Colvin, M.C. Schlamp, A.P. Alivistos, Nature 370, 354 (1994), doi: 10.1016/S1387-7003(03)00135-7
  • [21] R.N. Bhargava, D. Gallagher, T. Welker, J. Lumin. 60, 275 (1994), doi: 10.1016/S0022-2313(96)00162-7
  • [22] R.N. Bhargava, D. Gallagher, X. Ilong, A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994), doi: 10.1103/PhysRevLett.72.416
  • [23] Z.M. Tian, S.L. Yuan,J.H. He, P. Li, S.Q. Zhang, C.H. Wang, Y.Q. Wang, S.Y. Yin, L. Liu, J. Alloys Comp. 466, 26 (2008), doi: 10.1016/j.jallcom.2007.11.054
  • [24] A. Sundaresan, R. Bhargavi, N. Rangarajan, U. Siddesh, C.N.R. Rao, Phys. Rev. B 74, 161306(R) (2006), doi: 10.1103/PhysRevB.74.161306
  • [25] N.H. Hong, N. Poirot, J. Sakai, Phys. Rev. B 77, 33205 (2008), doi: 10.1103/PhysRevB.77.033205
  • [26] J.M.D. Coey, M. Venkatesan, P. Stamenov, C.B. Fitzgerald, L.S. Dorneles, Phys. Rev. B 72, 24450 (2005), doi: 10.1103/PhysRevB.72.024450
  • [27] A. Sundaresan, C.N.R. Rao, Solid State Commun. 149, 1197 (2009), doi: 10.1016/j.ssc.2009.04.028
  • [28] C. Madhu, A. Sundaresan, C.N.R. Rao, Phys. Rev. B 77, 201306(R) (2008), doi: 10.1103/PhysRevB.77.201306
  • [29] N.S. Sabri, A.K. Yahya, M.K. Talari, AIP Conf. Proc. 1250, 436 (2010), doi: 10.1016/j.phpro.2012.03.077
  • [30] C. Van Komen, A. Thurber, K.M. Reddy, J. Hays, A. Punnoose, J. Appl. Phys. 103, 7D141 (2008), doi: 10.1063/1.2836797
  • [31] L.B. Duan, G.H. Rao, J. Yu, Y.C. Wang, G.Y. Liu, J.K. Liang, J. Appl. Phys. 101, 63917 (2007), doi: 10.1063/1.2715840
  • [32] A. Sharma, M. Varshney, S. Kumar, K.D. Verma, R. Kumar, Nanomater. Nanotechnol. 1, 24 (2011), doi: 10.1088/0031-8949/86/01/015605
  • [33] A. Henglein, Chem. Rev. 89, 1861 (1989), doi: 10.1021/cr00098a010
  • [34] Y. Wang, N. Herron, J. Phys. Chem. 95, 525 (1991), doi: 10.1021/j100155a009
  • [35] H. Weller, Adv. Mater. 5, 88 (1993), doi: 10.1002/adma.19930050204
  • [36] K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt, B.E. Gnade, J. Appl. Phys. 79, 7983 (1996), doi: 10.1063/1.362349
  • [37] W.F. Zhang, M.S. Zhang, Z. Yin, Q. Chen, Appl. Phys. B 70, 261 (2000), doi: 10.1007/s003400050043
  • [38] W.F. Zhang, M.S. Zhang, Z. Yin, Phys. Status Solidi A 179, 319 (2000), doi: 10.1002/1521-396X(200006)179:2%3C319::AID-PSSA319%3E3.0.CO;2-H
  • [39] D.W. Bahnemann, C. Kormann, M.R. Hoffmann, J. Phys. Chem. 91, 3789 (1987), doi: 10.1021/j100298a015
  • [40] B. Choudhury, A. Choudhury, Curr. Appl. Phys. 13, 1025 (2013), doi: 10.1016/j.cap.2013.02.007
  • [41] C. Falcony, M. Garcia, A. Ortiz, J.C. Aloaso, J. Appl. Phys. 72, 1525 (1992), doi: 10.1063/1.351720
  • [42] S. Sharma, S. Chaudhary, S.C. Kashyap, V.K. Malik, J. Alloys Comp. 509, 7434 (2011), doi: 10.1016/j.jallcom.2011.04.072
  • [43] Z.M. Tian, S.L. Yuan, Y.Q. Wang, J.H. He, S.Y. Yin, K.L. Liu, S.J. Yuan, L. Liu, J. Phys. D Appl. Phys. 41, 055006 (2008), doi: 10.1088/0022-3727/41/5/055006
  • [44] S. Sharma, S. Chaudhary, S.C. Kashyap, S.K. Sharma, J. Appl. Phys. 109, 083905 (2011), doi: 10.1063/1.3567938
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n616kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.