Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1637-1644
Article title

Ab Initio Studies on Structural, Elastic, Thermodynamic and Electronic Properties of FeCrAs under Pressures

Title variants
Languages of publication
The structural, elastic, thermodynamic and electronic properties of nonmetallic metal FeCrAs are studied within density function perturbation theory. The thermodynamic properties of FeCrAs were deduced based on phonon frequencies within the framework of the quasiharmonic approximation. The calculated elastic modulus under various pressures indicates that FeCrAs is mechanically stable under pressure. The pressure-dependence of bulk and shear modulus, transverse and longitudinal sound velocities V (i.e. V_{S} and V_{L}), elastic Debye temperature Θ_{E} of FeCrAs have also been investigated. The calculated values of B/G indicate that FeCrAs presents high ductility under pressure. However, it is interesting that the value of B/G reaches a maximum under 40 GPa and almost remains unchanged when the pressure is above 70 GPa. The calculations show that the heat capacity C_{V} of this material is close to the Dulong-Petit limit 3R (about 224.61 J mol^{-1} K^{-1}) at high temperature regime. The analysis of electronic properties find that as the pressure increases, the absolute value of charge for As and Fe atom increases while Cr remains nearly a constant, indicating that the mechanic properties of FeCrAs under pressure should be mostly attributed to the interaction between Fe and As atoms.
  • Physical and Mechanical and Electrical Engineering College, Hexi University, Zhangye Gansu, 734000, China
  • Physical and Mechanical and Electrical Engineering College, Hexi University, Zhangye Gansu, 734000, China
  • Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
  • [1] W. Wu, A. McCollam, I. Swainson, P.M.C. Rourke, D.G. Rancourt, S.R. Julian, Euro. Phys. Lett. 85, 17009 (2009), doi: 10.1209/0295-5075/85/17009
  • [2] F.F. Tafti, W. Wu, S.R. Julian, J. Phys. Condens. Matter 25, 385601 (2013), doi: 10.1088/0953-8984/25/38/385601
  • [3] A. Akrap, Y.M. Dai, W. Wu, S.R. Julian, C.C. Homes, Phys. Rev. B 89, 125115 (2014), doi: 10.1103/PhysRevB.89.125115
  • [4] T. Senthil, Phys. Rev. B 78, 035103 (2008), doi: 10.1103/PhysRevB.78.035103
  • [5] J.G. Rau, H.Y. Kee, Phys. Rev. B 84, 104448 (2011), doi: 10.1103/PhysRevB.84.104448
  • [6] J.M. Florez, P. Vargas, C. Garcia, C.A. Ross, J. Phys. Condens. Matter 25, 226004 (2013), doi: 10.1088/0953-8984/25/22/226004
  • [7] J.S. Tse, Y. Yao, K. Tanaka, Phys. Rev. Lett. 98, 117004 (2007), doi: 10.1103/PhysRevLett.98.117004
  • [8] Y.K. Wei, N.N. Ge, G.F. Ji, X.R. Chen, L.C. Cai, S.Q. Zhou, D.Q. Wei, J. Appl. Phys. 114, 114905 (2013), doi: 10.1016/j.commatsci.2014.02.045
  • [9] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009), doi: 10.1088/0953-8984/21/39/395502
  • [10] N.D. Mermin, Phys. Rev. 137, A1441 (1965), doi: 10.1103/PhysRev.137.A1441
  • [11] S. Baroni, P. Giannozzi, A. Testa, Phys. Rev. Lett. 58, 1861 (1987), doi: 10.1103/PhysRevLett.58.1861
  • [12] S. Baroni, S.D. Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001), doi: 10.1103/RevModPhys.73.515
  • [13] W. Kohn, L.J. Sham, Phys. Rev. B 140, A1133 (1965), doi: 10.1103/PhysRev.140.A1133
  • [14] J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981), doi: 10.1103/PhysRevB.23.5048
  • [15] B. Hammer, I.B. Hansen, J.K. Norskov, Phys. Rev. B 59, 7413 (1999), doi: 10.1103/PhysRevB.59.7413
  • [16] F. Birch, Phys. Rev. 71, 809 (1947), doi: 10.1103/PhysRev.71.809
  • [17] L. Hollan, Ann. Chim. (Paris) 1, 437 (1966)
  • [18] M. Nylund, M. Roger, J. Sénateur, R. Fruchart, J. Solid State Chem. 4, 115 (1972), doi: 10.1016/0022-4596(72)90139-9
  • [19] R. Guérin, M. Sergent, Mater. Res. Bull. 12, 381 (1977), doi: 10.1016/0025-5408(77)90055-1
  • [20] P. Ravindran, L. Fast, P.A. Korzhavyi, B. Johnnsson, J. Wills, O. Eriksson, J. Appl. Phys. 84, 4891 (1998), doi: 10.1063/1.368733
  • [21] G.V. Sin'ko, N.A. Smirnov, J. Phys. Condens. Matter 14, 6989 (2002), doi: 10.1088/0953-8984/14/29/301
  • [22] R. Hill, Proc. Soc. Lond. A 65, 349 (1952), doi: 10.1088/0370-1298/65/5/307
  • [23] O.L. Anderson, J. Phys. Chem. Solids 21, 909 (1963), doi: 10.1016/0022-3697(63)90067-2
  • [24] K.B. Panda, K.S. Ravi Chandran, Comput. Mater. Sci. 35, 134 (2006), doi: 10.1016/j.actamat.2005.12.003
  • [25] F. Birch, J. Geophys. Res. 91, 4949 (1986), doi: 10.1029/JB091iB05p04949
  • [26] R.S. Mulliken, J. Chem. Phys. 45, 1833 (1955), doi: 10.1063/1.1741876
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.