PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1630-1634
Article title

Acquisition of the Surface Morphology of Ruled Gratings with a Microscope Objective

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this paper, an optical microscope objective with large numerical number is inserted into a Mach-Zehnder interferometer, and this system is adopted to detect the surface morphologies of two ruled transmission gratings with area scale to a micrometer. The object waves transmitting from the gratings interfere with spherical reference wave, and the interferograms constructed are recorded by a high-resolution CCD. The surface maps of the gratings are retrieved from the interferograms, and the results are confirmed by the measurement with an atomic force microscope, with detection errors in nanometer scale. This work provides an optical non-destructive method for precise detection of small-area sophisticated object surfaces with an optical microscope objective.
Keywords
Contributors
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
  • College of Physics and Electric Information, Dezhou University, Dezhou 253023, China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
author
  • College of Science, Qilu University Of Technology, Jinan 250353, China
author
  • School of Physics and Technology, University of Jinan, Jinan 250022, China
author
  • College of Physics and Electronics, Shandong Normal University, Jinan 250014, China
References
  • [1] M. Python, E. Vallat-Sauvain, J. Bailat, D. DominĂ©, L. Fesquet, A. Shah, Ch. Ballif, J. Non-Cryst. Solids 354, 2258 (2008), doi: 10.1016/j.jnoncrysol.2007.09.084
  • [2] H. Ohta, K. Nomura, H. Hiramatsu, K. Ueda, T. Kamiya, M. Hirano, H. Hosono, Solid-State Electron. 47, 2261 (2003), doi: 10.1016/S0038-1101(03)00208-9
  • [3] Y. Tsuboi, R. Shimizu, T. Shoji, N. Kitamura, J. Am. Chem. Soc. 131, 12623 (2009), doi: 10.1021/ja9016655
  • [4] H. Liu, B. Wang, E.S.P. Leong, P. Yang, Y. Zong, G.Y. Si, J.H. Teng, S.A. Maier, ACS Nano 4, 3139 (2010), doi: 10.1021/nn100466p
  • [5] S. Sarkar, S. Patra, N. Gayathri, S. Banerjee, Appl. Phys. Lett. 96, 063112 (2010), doi: 10.1063/1.3309690
  • [7] F.J. Giessibl, Rev. Mod. Phys. 75, 949 (2003), doi: 10.1103/RevModPhys.75.949
  • [8] J.M. Burch, Nature 171, 889 (1953), doi: 10.1038/171889a0
  • [9] I.K. Robinson, D.J. Tweet, Rep. Prog. Phys. 55, 599 (1992), doi: 10.1088/0034-4885/55/5/002
  • [10] M.K. Kim, L.F. Yu, C.M. Lo, C.J. Mann, Opt. Expr. 13, 8693 (2005), doi: 10.1364/OPEX.13.008693
  • [11] E. Cuche, F. Bevilacqua, C. Depeursinge, Opt. Lett. 24, 291 (1999), doi: 10.1364/OL.24.000291
  • [12] T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, E. Ziegler, Opt. Expr. 13, 6296 (2005), doi: 10.1364/OPEX.13.006296
  • [13] J.M. Huntley, H. Saldner, Appl. Opt. 32, 3047 (1993), doi: 10.1364/AO.32.003047
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n611kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.