Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 6 | 1616-1620
Article title

A DFT Study on (001) Thin Slabs of SrTiO_3 and BaTiO_3

Title variants
Languages of publication
In this paper, we studied the relaxation of (001) surface of BaTiO_3 and SrTiO_3 slabs with two termination surfaces and with 3, 5, and 7 layers thickness for each cases, using density functional theory and generalized gradient approximation for exchange-correlation functional and pseudo potential method. We calculated the slab energy and the rate of expansion and contraction of the layers and compare them for different thicknesses. Band structure and density of states for these slabs and for BaTiO_3 and SrTiO_3 bulk were computed to find out the variation of band gap with respect to slab thickness. It is found that in comparison with bulk, in TiO_2 slabs of both materials gap size decreases while in SrO and BaO slabs it increases.
  • Department of Physics, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
  • [1] A. Yoffe, H. Cohen, V. Shelukhin, Zh. Tekhn. Fiz. Technical Physics 57, 134 (2012), doi: 10.1134/S1063784212010288
  • [2] K.-I. Park, S. Xu, Y. Liu, G.-T. Hwang, S.-J.L. Kang, Z.L. Wang, Nano Letters. 10, 4939 (2010, doi: 10.1021/nl102959k
  • [3] A. Erba, K.E. El-Kelany, M. Ferrero, I. Baraille, M. Rérat, Phys. Rev. B 88, 035102 (2013), doi: 10.1103/PhysRevB.88.035102
  • [4] I. Popescu, I. Săndulescu, Á. Rédey, I.-C. Marcu, Catal. Lett. 141, 145 (2011), doi: 10.1007/s10562-010-0538-2
  • [5] Y. Cui, J. Briscoe, S. Dunn, Chem. Mater. 25, 4215 (2013), doi: 10.1021/cm402092f
  • [6] J. Wu, M. Muruganandham, L. Chang, G. Lee, V. Batalova, G. Mokrousov, Ozone: Sc.&Eng. 33, 74 (2011), doi: 10.1080/01919512.2011.536903
  • [7] H. Lu, L. Wills, B. Wessels, W. Lin, T. Zhang, G. Wong, D. Neumayer, T. Marks, Appl. Phys. Lett. 62, 1314 (1993), doi: 10.1063/1.108716
  • [8] T. Zhao, F. Chen, H. Lü, G. Yang, Z. Chen, Sci. China Series A Math. 43, 760 (2012), doi: 10.1007/BF02878441
  • [9] R. Eglitis, Int. J. Modern Phys. B , 28 (2014), doi: 10.1142/S0217979214300096
  • [10] A. Barbier, C. Mocuta, D. Stanescu, P. Jegou, N. Jedrecy, H. Magnan, J. Appl. Phys. 112, 114116 (2012), doi: 10.1063/1.4768469
  • [11] R. Eglitis, Phase Trans. 86, 1115 (2013), doi: 10.1080/01411594.2012.759220
  • [12] G.-Z. Zhu, G. Radtke, G.A. Botton, Nature 490, 384 (2012), doi: 10.1038/nature11563
  • [13] Z.-Q. Li, J.-L. Zhu, C. Wu, Z. Tang, Y. Kawazoe, Phys. Rev. B 58, 8075 (1998), doi: 10.1103/PhysRevB.58.8075
  • [14] S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, Quantum ESPRESSO: open-source package for research in electronic structure, simulation, and optimization,
  • [15] K.H. Hellwege, A.M. Hellwege, Ferroelectrics and Related Substances, New Series, Group III, Eds.: K.H. Hellwege, A.M. Hellwege, Springer-Verlag, Berlin 1969
  • [16] K. van Benthem, C. Elsässer, R. French, J. Appl. Phys. 90, 6156 (2001), doi: 10.1063/1.1415766
  • [17] S.H. Wemple, Phys. Rev. B 2, 2679 (1970), doi: 10.1103/PhysRevB.2.2679
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.