PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 5 | 1555-1559
Article title

X-Rays Response of Diamond Detectors Constructed Using Diamond Layers Produced by Low Power Microwave Chemical Vapor Deposition Reactor

Content
Title variants
Languages of publication
EN
Abstracts
EN
The low power reactor for microwave chemical vapor deposition process is described. The rotating Mo holder of 12 mm diameter and 6 mm height with the diamond substrate was heated by 2.45 GHz microwaves to temperature about 800°C in the range of (1.5-7)% CH_{4}/H_{2} mixture to create plasma at pressure 70 Tr. Stabilization of the holder temperature was performed by optical observation of radiation from the holder followed by adjusting of the magnetron power. Diamond detectors are produced using microwave chemical vapor deposition process grown on single crystal diamond high pressure high temperature Sumimoto substrates, [100] oriented. The response of diamond detectors for X-rays has been measured in the current mode using medical X-rays tube. The linear response of the diamond detector current versus X-ray tube current (dose) is presented.
Keywords
Year
Volume
127
Issue
5
Pages
1555-1559
Physical description
Dates
published
2015-05
References
  • [1] A. Balducci, Y. Garino, A. Lo Guidice, C. Manfredotti, M. Marinelli, G. Pucella, G. Verona-Rinati, Diam. Relat. Mater. 15, 1044 (2007), doi: 10.1016/j.diamond.2005.10.036
  • [2] H. Matsubara, Y. Saitoch, O. Maida, T. Teraji, K. Kobajaschi, T. Ito, Diam. Relat. Mater. 16, 797 (2006), doi: 10.1016/j.diamond.2007.01.001
  • [3] C. Descamps, D. Tromson, N. Tranchant, A. Isambert, A. Bridier, C. De Angelis, S. Onori, M. Pucciolini, P. Bergonzo, Radiat. Measur. 43, 933 (2008), doi: 10.1016/j.radmeas.2007.11.080
  • [4] G.T. Betzel, S.P. Lansley, F. Baluti, L. Reinsch, J. Meyer, Nucl. Instrum. Methods Phys. Res. A 614, 130 (2010), doi: 10.1016/j.nima.2009.12.008
  • [5] C. Manfredotti, P. Polesello, M. Truccati, E. Vittone, A. Lo Guidice, F. Fizotti, Diam. Relat. Mater. 7, 523 (1998), doi: 10.1016/S0925-9635(97)00275-6
  • [6] M. Assiamach, T.L. Nam, R.J. Keddy, Appl. Radiat. Isotopes 65, 545 (2007), doi: 10.1016/j.apradiso.2006.11.009
  • [7] A.J. Kordyasz, K. Sudlitz, E. Kulczycka, M. Antczak, A. Bednarek, M.S. Figat, B. Filipiak, A.P. Jakubowski, P. Jasinski, M. Kopka, M. Kowalczyk, P. Krysiak, K. N. Labeda, Z.C. Morozowicz, A. Pietrzak, R. Pozorek, University of Warsaw Heavy Ion Laboratory Annual Report 2007, SLCJ, Warsaw 2008, p. 47
  • [8] A.J. Kordyasz, K. Sudlitz, E. Kulczycka, M. Antczak, A. Bednarek, M.S. Figat, B. Filipiak, A.P. Jakubowski, P. Jasinski, M. Kopka, M. Kowalczyk, P. Krysiak, K. N. Labeda, Z.C. Morozowicz, A. Pietrzak, R. Pozorek, University of Warsaw Heavy Ion Laboratory Annual Report 2008, SLCJ, Warsaw 2009, p. 40
  • [9] A.J. Kordyasz, M. Kowalczyk, J. Tarasiuk, A. Bednarek, S. Przywozka, B. Majerowski, B. Piatkowski, R. Tarnowski, University of Warsaw Heavy Ion Laboratory Annual Report 2012, SLCJ, Warsaw 2013, p. 64
  • [10] A.J. Kordyasz, M. Kowalczyk, J. Tarasiuk, A. Bednarek, B, Radomyski, L. Kordyasz, University of Warsaw Heavy Ion Laboratory Annual Report 2013, SLCJ, Warsaw 2014, p. 81
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n530kz
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.