PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 5 | 1527-1528
Article title

The Two-Nucleon and Three-Nucleon System in Three Dimensions

Content
Title variants
Languages of publication
EN
Abstracts
EN
We present a brief overview of the three-dimensional formalism that is under development in our group. Using the 3D momentum eigenstates of the nucleon directly, instead of relying on the partial wave decomposition of operators involved in the calculations, allows us to use a very direct approach. This in turn enabled us to successfully tackle a large variety of few-body problems. Our calculation of the two nucleon transition operator and bound state can incorporate a very general form of the two-nucleon potential. Calculations of the three-nucleon bound state can include in addition to the two-nucleon potential also a very general operator form of the three-nucleon force. Recently the 3D formalism is also applied to processes that involve electro-weak probes. Carrying out these calculations for a wide spectrum of two-nucleon and three-nucleon potentials using the classical partial wave approach is unpractical due to the complicated spin structure of the operators. Using the 3D formalism, the calculations can be quickly adapted to test new models.
Keywords
Contributors
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
author
  • Institute of Physics, Jagiellonian University, W.S. Reymonta 4, 30-059 Kraków, Poland
References
  • [1] L. Wolfenstein, Phys. Rev. 96, 1654 (1954), doi: 10.1103/PhysRev.96.1654
  • [2] I. Fachruddin, Ch. Elster, W. Glöckle, Phys. Rev. C 72, 054003 (2001), doi: 10.1103/PhysRevC.63.054003
  • [3] I. Fachruddin, W. Glöckle, Phys. Rev. C 69, 064002 (2004), doi: 10.1103/PhysRevC.69.064002
  • [4] J. Golak, W. Glöckle, R. Skibiński, H. Witała, D. Rozpędzik, K. Topolnicki, I. Fachruddin, Ch. Elster, A. Nogga, Phys. Rev. C 81, 034006 (2010), doi: 10.1103/PhysRevC.81.034006
  • [5] Y. Saad, Iterative methods for sparse linear systems, SIAM, Philadelphia 2003
  • [6] K. Topolnicki, J. Golak, R. Skibiński, A.E. Elmeshneb, W. Glöckle, A. Nogga, H. Kamada, Few-Body Syst. 54, 2233 (2013), doi: 10.1007/s00601-012-0479-y
  • [7] J. Golak, R. Skibiński, H. Witała, K. Topolnicki, A.E. Elmeshneb, H. Kamada, A. Nogga, L.E. Marcucci, Phys. Rev. C 90, 024001 (2014), doi: 10.1103/PhysRevC.90.024001
  • [8] J. Golak, R. Skibiński, H. Witała, K. Topolnicki, W. Glöckle, A. Nogga, H. Kamada, Few-Body Syst. 53, 237 (2012), doi: 10.1007/s00601-012-0480-5
  • [9] J. Golak, K. Topolnicki, R. Skibiński, W. Glöckle, H. Kamada, A. Nogga, Few-Body Syst. 54, 2427 (2013), doi: 10.1007/s00601-012-0472-5
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n521kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.