Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 5 | 1483-1486
Article title

Small Animal PET as Non-Invasive Tool for Preclinical Imaging

Title variants
Languages of publication
Increasingly, in vivo imaging of small laboratory animals has become critical for preclinical biomedical research allowing the non-invasive assessment of biological and biochemical processes in living subjects. Many different positron labeled compounds have been synthesized as tracer that target a range of specific markers or pathways yielding quantitative, spatially and temporally indexed information on normal and diseased tissues such as tumors. Because of its non-invasive nature, nuclear techniques also enable to repeat studies in a single subject, facilitating longitudinal assay designs of rodent models of human cancer, cardiovascular, neurological and other diseases over the entire process, from the inception to progression of the disease, and monitoring the effectiveness of treatment or other interventions (with each animal serving as its own control and thereby reducing biological variability). This also serves to reduce the number of experimental animals required for a particular study. In contrast to cell or tissue culture-based experiments, studies in intact animals incorporate all the interacting physiological factors present in vivo.
  • Biomedical Applications and Pharmacokinetics Unit, CIEMAT, Avda. Complutense 40, 28040 Madrid Spain
  • Biomedical Applications and Pharmacokinetics Unit, CIEMAT, Avda. Complutense 40, 28040 Madrid Spain
  • [1] S.R. Cherry, S.S. Gambhir, ILAR J. 42, 219 (2001)
  • [2] F. Kiessling, B.J. Pichler, Small Animal Imaging, 1st ed., Springer-Verlag, Berlin 2011, doi: 10.1007/978-3642-12945-2
  • [3] A.F. Chatziioannou, Eur. J. Nucl. Med. 29, 98 (2002), doi: 10.1007/s00259-001-0683-3
  • [4] R. Myers, Nucl. Med. Biol. 28, 585 (2001), doi: 10.1016/S0969-8051(01)00213-X
  • [5] C. Kuntner, D. Stout, Front Phys. 2, 12 (2014), doi: 10.3389/fphy.2014.00012
  • [6] A.S.K. Dzik-Jurasz, Brit. J. Radiobiol. 76, S98 (2003), doi: 10.1259/bjr/25833499
  • [7] B. Riemann, K.P. Schäfers, O. Schober, M. Schäfers, Q. J. Nucl. Med. Mol. Imaging 52, 215 (2008)
  • [8] S.P. Hume, T. Jones, Nucl. Med. Biol. 25, 729 (1998)
  • [9] J.L. Vanderheyden, Q. J. Nucl. Med. Mol. Imaging 53, 374 (2009)
  • [10] M.E. Phelps, Proc. Natl. Acad. Sci. USA 97, 9226 (2000)
  • [11] D.L. Smith, W.A. Breeman, J. Sims-Mourtada, Appl. Radiat. Isot. 76, 14 (2013), doi: 10.1016/j.apradiso.2012.10.014
  • [12] A. Al-Nahhas, Z. Win, T. Szyszko, A. Singh, S. Khan, D. Rubello, Eur. J. Nucl. Med. Mol. Imaging 34, 1897 (2007)
  • [13] M. Pagou, I. Zerizer, A. Al-Nahhas, Hell. J. Nucl. Med. 12, 102 (2009)
  • [14] G.A. van Dongen, G.W. Visser, M.N. Lub-de Hooge, E.G. de Vries, L.R. Perk, Oncologist 12, 1379 (2007), doi: 10.1634/theoncologist.12-12-1379
  • [15] M. Salsano, G. Treglia, Res. Rep. Nucl. Med. 3, 9 (2013), doi: 10.2147/RRNM.S35186
  • [16] J. De Vos, N. Devoogdt, T. Lahoutte, S. Muyldermans, Expert Opin. Biol. Ther. 13, 1149 (2013), doi: 10.1517/14712598.2013.800478
  • [17] S.M. Knowles, A.M. Wu, J. Clin. Oncol. 30, 3884 (2012), doi: 10.1200/JCO.2012.42.4887
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.