Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1403-1406
Article title

The Effect of Yttrium Oxide Reinforcement on the Microstructural and Mechanical Properties of Biologically Derived Hydroxyapatite

Title variants
Languages of publication
In the present study, hydroxyapatite used as a matrix material was derived from the femur bones of Meleagris gallapova (MGHA) and then reinforced with yttriyum oxide (Y₂O₃, 5 and 10 wt.%). Then samples pelleted at 350 MPa were sintered between 900 and 1300°C. Finally, the effect of Y₂O₃ reinforcement on the microstructural and mechanical properties of MGHA was investigated. Scanning electron microscope (SEM) and X-ray diffraction (XRD) patterns were used for microstructural examinations. Density, microhardness and compressive strengths of composites were used to analyze their mechanical properties. Experimental results show that mechanical properties of composites were enhanced by increasing the temperature. The optimum results were obtained for MGHA-10% Y₂O₃ composites sintered at 1200°C.
Physical description
  • [1] R. Sun, K. Chen, Z. Liao, N. Meng, Mat. Res. Bull. 48, 1143 (2013), doi: 10.1016/j.materresbull.2012.12.013
  • [2] J. Li, B. Fartash, L. Herrnansson, Biomaterials 16, 417 (1995), doi: 10.1016/0142-9612(95)98860-G
  • [3] M.K. Herliansyah, M. Hamdi, A.I. Ektessabi, M.W. Wildan, J.A. Toque, Mat. Sci. Eng. C 29, 1674 (2009), doi: 10.1016/j.msec.2009.01.007
  • [4] G. Goller, F.N. Oktar, Mat. Lett. 56, 142 (2002), doi: 10.1016/S0167-577X(02)00430-5
  • [5] S. Kalmodia, S. Goenka, T. Laha, D. Lahiri, B. Basu, K. Balani, Mat. Sci. Eng. C 30, 1162 (2010), doi: 10.1016/j.msec.2010.06.009
  • [6] R. Ravarian, F. Moztarzadeh, M.S. Hashjin, S.M. Rabiee, P. Khoshakhlagh, M. Tahriri, Ceram. Int. 36, 291 (2010), doi: 10.1016/j.ceramint.2009.09.016
  • [7] H.B. Guo, X. Miao, Y. Chen, P. Cheang, K.A. Khor, Mat. Lett. 58, 304 (2004), doi: 10.1016/S0167-577X(03)00474-9
  • [8] S. Pazarlioglu, H. Gokce, S. Ozyegin, S. Salman, Bio-Med. Mater. Eng. 24, 1751 (2014), doi: 10.3233/BME-140987
  • [9] British Standard Non-metallic Materials for Surgical Implants, Specification for ceramic materials based on alumina BS 7253, Part 2, ISO 6474-1981, 1990
  • [10] O. Gunduz, S. Daglilar, S. Salman, N. Ekren, S. Agathopoulos, F.N. Oktar, J. Comp. Mat. 42, 1281 (2008), doi: 10.1177/0021998308092196
  • [11] A. Nakahira, K. Shiba, S. Yamaguchi, K. Kijima, Key Eng. Mat. 161-163, 177 (1999), doi: 10.4028/
  • [12] X. Fan, E.D. Case, F. Ren, Y. Shu, M.J. Baumanni, J. Mech. Beh. Biomed. Mat. 8, 21 (2012), doi: 10.1016/j.jmbbm.2011.12.010
  • [13] Y.W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P. Cheang, Biomaterials 23, 37 (2002), doi: 10.1016/S0142-9612(01)00076-X
  • [14] F.N. Oktar, L.S. Ozyegin, O. Meydanoglu, H. Aydin, S. Agathopoulos, G. Rocha, B. Sennaroglu, E.S. Kayali, Key Eng. Mat. 309-311, 101 (2006), doi: 10.4028/
  • [15] F.N. Oktar, S. Agathopoulos, L.S. Ozyegin, O. Gunduz, N. Demirkol, Y. Bozkurt, S. Salman, J. Mater. Sci.: Mater. Med. 18, 2137 (2007), doi: 10.1007/s10856-007-3200-9
  • [16] H.H. Celik, O. Gunduz, N. Ekren, Z. Ahmad, F.N.T Oktar, J. Biomat. Nanobiotech. 2, 98 (2011), doi: 10.4236/jbnb.2011.21013
  • [17] L.L. Hench, An Introduction to Bioceramics, Second Edition, Larry L. Hench, p. 8, (2013)
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.