Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1380-1383
Article title

Electrical Conductivity of Boron Oxide-Doped Yttria-Stabilized Cubic Zirconia (8YSZ)

Title variants
Languages of publication
The effect of B₂O₃ addition on the electrical conductivity of 8 mol% yttria-stabilized cubic zirconia (8YSZ) was investigated by analyzing the impedance spectra of 0-10 wt.% B₂O₃-doped 8YSZ powders prepared via a colloidal process. The doped powders were then pelletized under a pressure of 200 MPa, and then sintered at 1400°C for 10 h. Measurements of the electrical conductivity of the sintered specimens within a frequency range of 100 mHz-13 MHz, and temperature range of 300-800°C, revealed an increase in conductivity with increasing temperature. Furthermore, the grain interior, grain boundary and total conductivity of 8YSZ were found to be enhanced by the addition of 1 wt.% B₂O₃. This is attributed to the lattice distortion created by the addition of B^{3+} cations to the 8YSZ lattice, which leads to an increase in the concentration of oxygen vacancies, thus ultimately resulting in an enhanced electrical conductivity.
  • Harran University, Engineering Faculty, Mechanical Engineering Department, 63300, Sanliurfa, Turkey
  • Gazi University, Technology Faculty, Metallurgical and Materials Engineering Department, 06500, Ankara, Turkey
  • [1] M.J. Verkerk, A.J.A. Winnubst, A.J. Burggraaf, J. Mater. Sci. 17, 3113 (1982), doi: 10.1007/BF01203473
  • [2] M. Miyayama, H. Yanagida, A. Asada, Am. Ceram. Soc. Bull. 64, 660 (1985)
  • [3] B. Aktaş, High Temp. Mater. Proc. 32, 551 (2013), doi: 10.1515/htmp-2013-0002
  • [4] T.L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, Solid State Ionics 148, 513 (2002), doi: 10.1016/S0167-2738(02)00098-X
  • [5] Y. Li, J. Gong, Z. Tang, Z. Zhang, J. Chin. Ceram. Soc. 25, 705 (1997)
  • [6] Z. Lv, R. Guo, P. Yao, F. Dai, Mater. Des. 28, 1399 (2007), doi: 10.1016/j.matdes.2005.12.004
  • [7] B. Aktas, S. Tekeli, M. Kucuktuvek, J. Mater. Eng. Perform. 23, 349 (2014), doi: 10.1007/s11665-013-0750-5
  • [8] S. Koçyiğit, Ö. Gökmen, S. Temel, A. Aytimur, İ. Uslu, S.H. Bayari, Ceram. Int. 39, 7767 (2013), doi: 10.1016/j.ceramint.2013.03.035
  • [9] H.S. Jadhav, M.S. Cho, R.S. Kalubarme, J.S. Lee, K.N. Jung, K.H. Shin, C.J. Park, J. Power Sources 241, 502 (2013), doi: 10.1016/j.jpowsour.2013.04.137
  • [10] N. Tawichai, U. Intatha, S. Eitssayeam, K. Pengpat, G. Rujijanagul, T. Tunkasiri, Phase Transit. 83, 55 (2010), doi: 10.1080/01411590903549005
  • [11] H. Erkalfa, B. Yuksel, T.O. Ozkan, Key Eng. Mater. 264-268, 1333 (2004), doi: 10.4028/
  • [12] S.M. Rhim, H. Bak, S. Hong, O.K. Kim, J. Am. Ceram. Soc. 83, 3009 (2000), doi: 10.1111/j.1151-2916.2000.tb01675.x
  • [13] M.B. Ricoult, M. Badding, Y. Thibault, Adv. El. Electroch. Ceram. 179, Wiley USA, pp. 173, 2012, doi: 10.1002/9781118407899.ch20
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.