Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1317-1319
Article title

The Investigation of Electron-Optical Parameters Using Artificial Neural Networks

Title variants
Languages of publication
The optimization of scientific instruments is crucially important to increase the quality of measurements. A major challenge for the development of these experimental tools is the precise determination of focal parameters. Therefore, usage of an innovative technique that meets our requirements is desirable. Among intelligent algorithms, artificial neural network (ANN) has an advantage of obtaining the optical parameters data with high accuracy. One of the most popular geometries used in electrostatic optical devices is geometry with cylinder lenses. In this study, the artificial neural network is applied for the first time to the subject of the magnification parameters of three-element electrostatic cylinder lenses for a wide range of values of the applied voltages. ANN-based optimization has been performed using Matlab/Simulink, and the performance analysis has also been conducted. High-performance results have been achieved using ANN approach. The commercial simulation package SIMION software is used as a data source for artificial neural network results. This approach provides new perspectives for the effective solution for the problems related to electrostatic lenses with different geometries.
  • Mehmet Akif Ersoy University, Department of Computer Engineering, Burdur, Turkey
  • [1] K.L. Peterson, Phys. Rev. A 41, 2457 (1990), doi: 10.1103/physreva.41.2457
  • [2] W.L. Morgan, IEEE Trans. Plasma Sci. 19, 250 (1991), doi: 10.1109/27.106821
  • [3] K.A. El-Metwally, T.I. Haweel, M.Y. El-Bakry, Int. J. Mod. Phys. C 11, 619 (2000), doi: 10.1142/S0129183100000535
  • [4] T. Nguyen-Thien, T. Tran-Cong, App. Math. Model. 23, 687 (1999), doi: 10.1016/S0307-904X(99)00006-2
  • [5] J. Khan, J.S. Wei, M. Ringner, L.H. Saal, M. Ladanyi, F. Westermann, F. Berthold, M. Schwab, C.R. Antonescu, C. Peterson, P.S. Meltzer, Nature Medicine 7, 673 (2001), doi: 10.1038/89044
  • [6] D. Petkovic, N.T. Pavlovic, S. Shamshirband, M.L. Mat Kiah, N. Badrul Anuar, M.Y. Idna Idris, Opt. Lasers Eng. 55, 84 (2014), doi: 10.1016/j.optlaseng.2013.10.018
  • [7] D.W.O. Heddle, Electrostatic Lens Systems, IOP Press, London 2000, doi: 10.1201/NOE0750306973
  • [8] O. Sise, M. Ulu, M. Dogan, Nucl. Instr. Meth. A. 554, 114 (2005), doi: 10.1016/j.nima.2005.08.068
  • [9] O. Sise, N. Okumus, M. Ulu, M. Dogan, J. Elect. Spectr. Rel. Phen. 175, 76 (2009), doi: 10.1016/j.elspec.2009.08.004
  • [10] S.C. Johnston, W.A. Greynolds, D.Y. Wang, D.C. Dilworth, Proc. SPIE 1780, 192 (1993)
  • [11] S.M. Tam, C.K. Kwong, W.H. Ip, Int. J. Comp. Appl. Techn. 13, 229 (2000), doi: 10.1504/ijcat.2000.000243
  • [11] A.A. Fadhil, Int. J. Adv. Comp. Tech. 2, 66 (2010), doi: 10.4156/ijact.vol2.issue5.7
  • [12] Simion 3D v8.1, Scientific Instrument Services Inc.,, 2012
  • [13] A.B. El-Kareh, J.C.J. El-Kareh, Electron Beams, Lenses and Optics 1-2, Academic Press, London 1970, doi: 10.1016/B978-0-12-238002-0.50001-3
  • [14] A. Renau, F.H. Read, J.N.H. Brunt, J. Phys. E: Sci. Instrum. 15, 347 (1982), doi: 10.1088/0022-3735/15/3/025
  • [15] D.W.O. Heddle, J. Phys. D: Appl. Phys. 32, 1447 (1999), doi: 10.1088/0022-3727/32/13/303
  • [16] A. Khursheed, The Finite Element Method in Charged Particle Optics, Kluwer, London 1999
  • [17] I.A. Galushkin, Neural networks theory, Springer, Berlin 2007, doi: 10.1007/978-3-540-48125-6
  • [18] A.H. Isik, İ. Güler, M.U. Sener, Telemed E. Health 19, 24 (2013), doi: 10.1089/tmj.2012.0056
  • [19] D. Marquardt, SIAM J. Soc. Ind. Appl. Math. 11, 431 (1963), doi: 10.1137/0111030
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.