Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1292-1294

Article title

Manufacturing of Al-Zr Thermal-resistant Alloys for Transmission Lines

Content

Title variants

Languages of publication

EN

Abstracts

EN
The present transmission lines of populous cities will have to be changed with an ability to work at higher temperatures without any weight and cross section changes. Innovative thermal-resistant alloy conductors (T-ACSR) operate in the range of about 150-200°C instead of 75°C which is the standard ACSR type conductor service temperature. In this study, the manufacturing procedure of Al-Zr alloy wire, used as high-temperature conductor wires, have been introduced. The Al-Zr alloy has been cast in a permanent mold than being extruded to a diameter of 10 mm at 400°C. After that the extruded rods have been cold drawn to a diameter of 3.02 mm. Elongation and tensile strength values of the cold drawn wire have been achieved by tensile test at elevated temperatures. Also, microstructural analysis and dispersion hardening procedure have been investigated. The results show that tensile strength and thermal-resistant property are improved by the addition of Zr.

Keywords

Contributors

author
  • Kocaeli University, Ford Otosan Vocational School of Automotive, 41680, Kocaeli, Turkey
author
  • Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey
author
  • Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey

References

  • [1] A. Soares, A. Gomes, C.H. Antunes, Renew. Sust. Energ. Rev. 30, 490 (2014), doi: 10.1016/j.rser.2013.10.019
  • [2] M. Hsu, Utilities Policy 6, 257 (1997), doi: 10.1016/S0957-1787(97)00013-1
  • [3] W. Yuan, Z. Liang, C. Zhang, L. Wei, Mater. Des. 34, 788 (2012), doi: 10.1016/j.matdes.2011.07.003
  • [4] S. Karabay, Mater. Des. 27, 821 (2006), doi: 10.1016/j.matdes.2005.06.005
  • [5] S. Karabay, Mater. Des. 29, 1364 (2008), doi: 10.1016/j.matdes.2007.06.004
  • [6] C.A. Cimini Jr, B.Q.A. Fonseca, Int. J. Elec. Power. 49, 280 (2013), doi: 10.1016/j.ijepes.2012.12.015
  • [7] S.Karabay, E.A. Güven, A.T. Ertürk, Eng. Fail. Anal. 31, 153 (2013), doi: 10.1016/j.engfailanal.2013.02.005
  • [8] S.Karabay, E.A. Güven, A.T. Ertürk, Materiali In Tehnologije 47, 119 (2013)
  • [9] A.L. Norbury, Trans. Faraday Soc. 16, 570 (1921), doi: 10.1039/TF9211600570
  • [10] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 475, 241 (2008), doi: 10.1016/j.msea.2007.04.054
  • [11] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 387, 936 (2004), doi: 10.1016/j.msea.2003.10.374
  • [12] E. Feyzullahoğlu, A.T. Ertürk, E.A. Güven, T. Nonferr. Metal. Soc. 23, 3575 (2013), doi: 10.1016/S1003-6326(13)62903-9
  • [13] H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, K. Marthinsen, Mater. Sci. Eng. A. 421, 154 (2006), doi: 10.1016/j.msea.2005.11.063
  • [14] B. Forbord, L. Auran, W. Lefebvre, H. Hallem, K. Marthinsen, Mater. Sci. Eng. A. 424, 174 (2006), doi: 10.1016/j.msea.2006.03.044
  • [15] J. Zhi-Hong, J. Røyset, J.K. Solberg, L. Qing, T. Nonferr. Metal. Soc. 22, 1688 (2012), doi: 10.1016/S1003-6326(11)61399-X
  • [16] Y.W. Riddle, T.H. Jr Sanders, Mater. Sci. Forum 331, 799 (2000), doi: 10.4028/www.scientific.net/MSF.331-337.799
  • [17] G. Peng, K. Chen, H. Fang, S. Chen, Mater. Sci. Eng. A. 535, 311 (2012), doi: 10.1016/j.msea.2011.12.094
  • [18] Y. Birol, E.A. Güven, L.J. Capan, Mater. Sci. Tech-Lond. 27, 1851 (2011), doi: 10.1179/1743284711Y.0000000048

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4120kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.