PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1292-1294
Article title

Manufacturing of Al-Zr Thermal-resistant Alloys for Transmission Lines

Content
Title variants
Languages of publication
EN
Abstracts
EN
The present transmission lines of populous cities will have to be changed with an ability to work at higher temperatures without any weight and cross section changes. Innovative thermal-resistant alloy conductors (T-ACSR) operate in the range of about 150-200°C instead of 75°C which is the standard ACSR type conductor service temperature. In this study, the manufacturing procedure of Al-Zr alloy wire, used as high-temperature conductor wires, have been introduced. The Al-Zr alloy has been cast in a permanent mold than being extruded to a diameter of 10 mm at 400°C. After that the extruded rods have been cold drawn to a diameter of 3.02 mm. Elongation and tensile strength values of the cold drawn wire have been achieved by tensile test at elevated temperatures. Also, microstructural analysis and dispersion hardening procedure have been investigated. The results show that tensile strength and thermal-resistant property are improved by the addition of Zr.
Keywords
Contributors
author
  • Kocaeli University, Ford Otosan Vocational School of Automotive, 41680, Kocaeli, Turkey
author
  • Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey
author
  • Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey
References
  • [1] A. Soares, A. Gomes, C.H. Antunes, Renew. Sust. Energ. Rev. 30, 490 (2014), doi: 10.1016/j.rser.2013.10.019
  • [2] M. Hsu, Utilities Policy 6, 257 (1997), doi: 10.1016/S0957-1787(97)00013-1
  • [3] W. Yuan, Z. Liang, C. Zhang, L. Wei, Mater. Des. 34, 788 (2012), doi: 10.1016/j.matdes.2011.07.003
  • [4] S. Karabay, Mater. Des. 27, 821 (2006), doi: 10.1016/j.matdes.2005.06.005
  • [5] S. Karabay, Mater. Des. 29, 1364 (2008), doi: 10.1016/j.matdes.2007.06.004
  • [6] C.A. Cimini Jr, B.Q.A. Fonseca, Int. J. Elec. Power. 49, 280 (2013), doi: 10.1016/j.ijepes.2012.12.015
  • [7] S.Karabay, E.A. Güven, A.T. Ertürk, Eng. Fail. Anal. 31, 153 (2013), doi: 10.1016/j.engfailanal.2013.02.005
  • [8] S.Karabay, E.A. Güven, A.T. Ertürk, Materiali In Tehnologije 47, 119 (2013)
  • [9] A.L. Norbury, Trans. Faraday Soc. 16, 570 (1921), doi: 10.1039/TF9211600570
  • [10] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 475, 241 (2008), doi: 10.1016/j.msea.2007.04.054
  • [11] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 387, 936 (2004), doi: 10.1016/j.msea.2003.10.374
  • [12] E. Feyzullahoğlu, A.T. Ertürk, E.A. Güven, T. Nonferr. Metal. Soc. 23, 3575 (2013), doi: 10.1016/S1003-6326(13)62903-9
  • [13] H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, K. Marthinsen, Mater. Sci. Eng. A. 421, 154 (2006), doi: 10.1016/j.msea.2005.11.063
  • [14] B. Forbord, L. Auran, W. Lefebvre, H. Hallem, K. Marthinsen, Mater. Sci. Eng. A. 424, 174 (2006), doi: 10.1016/j.msea.2006.03.044
  • [15] J. Zhi-Hong, J. Røyset, J.K. Solberg, L. Qing, T. Nonferr. Metal. Soc. 22, 1688 (2012), doi: 10.1016/S1003-6326(11)61399-X
  • [16] Y.W. Riddle, T.H. Jr Sanders, Mater. Sci. Forum 331, 799 (2000), doi: 10.4028/www.scientific.net/MSF.331-337.799
  • [17] G. Peng, K. Chen, H. Fang, S. Chen, Mater. Sci. Eng. A. 535, 311 (2012), doi: 10.1016/j.msea.2011.12.094
  • [18] Y. Birol, E.A. Güven, L.J. Capan, Mater. Sci. Tech-Lond. 27, 1851 (2011), doi: 10.1179/1743284711Y.0000000048
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n4120kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.