Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
The present transmission lines of populous cities will have to be changed with an ability to work at higher temperatures without any weight and cross section changes. Innovative thermal-resistant alloy conductors (T-ACSR) operate in the range of about 150-200°C instead of 75°C which is the standard ACSR type conductor service temperature. In this study, the manufacturing procedure of Al-Zr alloy wire, used as high-temperature conductor wires, have been introduced. The Al-Zr alloy has been cast in a permanent mold than being extruded to a diameter of 10 mm at 400°C. After that the extruded rods have been cold drawn to a diameter of 3.02 mm. Elongation and tensile strength values of the cold drawn wire have been achieved by tensile test at elevated temperatures. Also, microstructural analysis and dispersion hardening procedure have been investigated. The results show that tensile strength and thermal-resistant property are improved by the addition of Zr.
Discipline
- 81.70.Jb: Chemical composition analysis, chemical depth and dopant profiling
- 81.40.Ef: Cold working, work hardening; annealing, post-deformation annealing, quenching, tempering recovery, and crystallization
- 83.50.Uv: Material processing (extension, molding, etc.)
- 81.05.Bx: Metals, semimetals, and alloys
- 81.70.Bt: Mechanical testing, impact tests, static and dynamic loads(see also 62.20.M- Structural failure of materials; 46.50.+a Fracture mechanics, fatigue, and cracks)
Journal
Year
Volume
Issue
Pages
1292-1294
Physical description
Dates
published
2015-04
Contributors
author
- Kocaeli University, Ford Otosan Vocational School of Automotive, 41680, Kocaeli, Turkey
author
- Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey
author
- Kocaeli University, Engineering Fac., Mechanical Eng. Dept. 41380, Kocaeli, Turkey
References
- [1] A. Soares, A. Gomes, C.H. Antunes, Renew. Sust. Energ. Rev. 30, 490 (2014), doi: 10.1016/j.rser.2013.10.019
- [2] M. Hsu, Utilities Policy 6, 257 (1997), doi: 10.1016/S0957-1787(97)00013-1
- [3] W. Yuan, Z. Liang, C. Zhang, L. Wei, Mater. Des. 34, 788 (2012), doi: 10.1016/j.matdes.2011.07.003
- [4] S. Karabay, Mater. Des. 27, 821 (2006), doi: 10.1016/j.matdes.2005.06.005
- [5] S. Karabay, Mater. Des. 29, 1364 (2008), doi: 10.1016/j.matdes.2007.06.004
- [6] C.A. Cimini Jr, B.Q.A. Fonseca, Int. J. Elec. Power. 49, 280 (2013), doi: 10.1016/j.ijepes.2012.12.015
- [7] S.Karabay, E.A. Güven, A.T. Ertürk, Eng. Fail. Anal. 31, 153 (2013), doi: 10.1016/j.engfailanal.2013.02.005
- [8] S.Karabay, E.A. Güven, A.T. Ertürk, Materiali In Tehnologije 47, 119 (2013)
- [9] A.L. Norbury, Trans. Faraday Soc. 16, 570 (1921), doi: 10.1039/TF9211600570
- [10] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 475, 241 (2008), doi: 10.1016/j.msea.2007.04.054
- [11] B. Forbord, H. Hallem, J. Røyset, K. Marthinsen, Mater. Sci. Eng. A. 387, 936 (2004), doi: 10.1016/j.msea.2003.10.374
- [12] E. Feyzullahoğlu, A.T. Ertürk, E.A. Güven, T. Nonferr. Metal. Soc. 23, 3575 (2013), doi: 10.1016/S1003-6326(13)62903-9
- [13] H. Hallem, W. Lefebvre, B. Forbord, F. Danoix, K. Marthinsen, Mater. Sci. Eng. A. 421, 154 (2006), doi: 10.1016/j.msea.2005.11.063
- [14] B. Forbord, L. Auran, W. Lefebvre, H. Hallem, K. Marthinsen, Mater. Sci. Eng. A. 424, 174 (2006), doi: 10.1016/j.msea.2006.03.044
- [15] J. Zhi-Hong, J. Røyset, J.K. Solberg, L. Qing, T. Nonferr. Metal. Soc. 22, 1688 (2012), doi: 10.1016/S1003-6326(11)61399-X
- [16] Y.W. Riddle, T.H. Jr Sanders, Mater. Sci. Forum 331, 799 (2000), doi: 10.4028/www.scientific.net/MSF.331-337.799
- [17] G. Peng, K. Chen, H. Fang, S. Chen, Mater. Sci. Eng. A. 535, 311 (2012), doi: 10.1016/j.msea.2011.12.094
- [18] Y. Birol, E.A. Güven, L.J. Capan, Mater. Sci. Tech-Lond. 27, 1851 (2011), doi: 10.1179/1743284711Y.0000000048
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n4120kz