Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1225-1229
Article title

Investigation of the Effects of Erosion Test Parameters on the Particle Impengement Velocity by Using CFD Analysis

Title variants
Languages of publication
Particle impingement velocity is one of the most important parameters in solid particle erosion. Particle impingement velocity depends on erosion test parameters such as particle acceleration pressure, erodent particle size and standoff distance. Over the past decades many experimental studies have been conducted to examine the effects of these parameters on the particle impingement velocity. In this study, the effects of particle acceleration pressure, erodent particle size and standoff distance on the particle impingement velocity have been investigated by using a computational fluid dynamics (CFD) program, FLUENT. In order to achieve these goals solid particle erosion tests are simulated under various test parameters and the effects of these parameters are examined in detail. The effect of particle velocity on the flow field is characterized with method geometrics. Two-dimensional plane symmetrical models are utilized to reduce the computation time. Plots of gas pressure and particle velocity contours at the XY symmetrical plane from nozzle inlet to substrate were given. CFD analysis showed that all erosion test parameters have dramatically affected particle impingement velocity. Particle impingement velocity was increased with increases in acceleration pressure while it was decreased with increases in both erodent particle size and standoff distance.
Physical description
  • [1] A. Patnaik, A. Satapathy, N. Chand, N.M. Barkoula, S. Biswas, Wear 268, 249 (2010), doi: 10.1016/j.wear.2009.07.021
  • [2] K. Yildizlı, M.B. Karamış, F. Nair, Wear 261, 622 (2006), doi: 10.1016/j.wear.2006.01.042
  • [3] W.Y. Li, H. Liao, G. Douchy, C. Coddet, Materials and Design 28, 2129 (2007), doi: 10.1016/j.matdes.2006.05.016
  • [4] S. Yin, X.F. Wang, W.Y. Li, Surface & Coatings Technology 205, 2970 (2011), doi: 10.1016/j.surfcoat.2010.11.002
  • [5] B. Samareh, O. Stier, V. Lüthen, A. Dolatabadi, Journal of Thermal Spray Technology 18, 934 (2009), doi: 10.1007/s11666-009-9363-9
  • [6] W.Y. Li, C.J. Li, Journal of Thermal Spray Technology 14, 391 (2005), doi: 10.1361/105996305X59404
  • [7] Q. Wang, M.C. Melaaen, S.R. De Silva, G. Tong, Powder Technology 160, 93 (2005), doi: 10.1016/j.powtec.2005.08.006
  • [8] T. Deng, M.S. Bingley, M.S.A. Bradley, S.R. De Silva, Wear 265, 945 (2008), doi: 10.1016/j.wear.2008.02.017
  • [9] H.S Grewal., A. Agrawal, H. Singh, Journal of Materials Engineering and Performance 22, 152 (2013), doi: 10.1007/s11665-012-0219-y
  • [10] W.Y. Li, C. Zhang, X.P. Guo, G. Zhang, H.L. Liao, C.J. Li, C. Coddet, Materials and Design 29, 297 (2008), doi: 10.1016/j.matdes.2007.02.005
  • [11] M. Azimian, H.J. Bart, EPJ Web of Conferences 45, 01009 (2013), doi: 10.1051/epjconf/20134501009
  • [12] Y. Yildiran, E. Avcu, A.E. Şahin, S.Fidan, H. Yetiştiren, T. Sinmazçelik, Acta Physica Polonica A 125, 523 (2014), doi: 10.12693/APhysPolA.125.523
  • [13] R. Lupoi, W. O'Neill, Surface & Coatings Technology 206, 1069 (2011), doi: 10.1016/j.surfcoat.2011.07.061
  • [14] R. Huang, H. Fukanuma, Journal of Thermal Spray Technology 21, 541 (2012), doi: 10.1007/s11666-011-9707-0
  • [15] A. Sova, A. Okunkova, S. Grigoriev, I. Smurov, Journal of Thermal Spray Technology 22, 75 (2013), doi: 10.1007/s11666-012-9846-y
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.