Title variants
Languages of publication
Abstracts
This paper describes the TE-TM mode conversion in a magneto-optical layer made by a SiO₂/ZrO₂ layer doped with magnetic CoFe₂O₄ nanoparticles. The mode conversion is caused by the Faraday rotation if the magnetization is aligned along the z-axis, parallel to mode propagation. The properties of this phenomenon are simulated using the full-vectorial beam propagation method (BPM). The simulation results show clearly the influence of two parameters in such devices, the first one is the off-diagonal component of tensor that enhances the rotation and the second one, the imaginary diagonal tensor (parameters K ) which makes it suffering from absorption. This result of simulation is an important step to achieve a monolithic integration of optical isolators.
Discipline
- 41.20.Jb: Electromagnetic wave propagation; radiowave propagation(for light propagation, see 42.25.Bs; for electromagnetic waves in plasma, see 52.35.Hr; for atmospheric, ionospheric, and magnetospheric propagation, see 92.60.Ta, 94.20.Bb, and 94.30.Tz, respectively; see also 94.05.Pt Wave/wave, wave/particle interactions, in space plasma physics)
- 04.30.Nk: Wave propagation and interactions
- 92.60.Ta: Electromagnetic wave propagation
Journal
Year
Volume
Issue
Pages
1191-1194
Physical description
Dates
published
2015-04
References
- [1] N. Savage, IEEE Spectrum 39, 32 (2002), doi: 10.1109/MSPEC.2002.1021941
- [2] F. Choueikani, F. Royer, D. Jamon, A. Siblini, J.J. Rousseau, S. Neveu, J. Charara, Appl. Phys. Lett. 94, 051113 (2009), doi: 10.1063/1.3079094
- [3] H. Amata, F. Royer, F. Choueikani, D. Jamon, F. Parsy, J.E. Broquin, S. Neveu, J.J. Rousseau, Appl. Phys. Lett. 99, 251108 (2011), doi: 10.1063/1.3671180
- [4] N. Bahlmann, M. Lohmeyer, O. Zhuromskyy, H. Dötsch, P. Hertel, Opt. Commun. 161, 330 (1999), doi: 10.1016/S0030-4018(99)00027-9
- [5] A. Hocini, M. Bouras, H. Amata, Opt. Mater. 35, 1669 (2013), doi: 10.1016/j.optmat.2013.04.026
- [6] H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A.F. Popkov, JOSA B 22, 240 (2005), doi: 10.1364/JOSAB.22.000240
- [7] M.R. Lebbal, T. Boumaza, M. Bouchemat, A. Hocini, F. Hobar, A. Benghalia, Eur. Phys. J. Appl. Phys. 42, 75 (2008), doi: 10.1051/epjap:2008033
- [8] F. Wijnands, H.J.W.M. Hoekstra, G.J.M. Krijnen, R.M. de Ridder, J. Lightwave Technol. 12, 2066 (1994), doi: 10.1109/50.350626
- [9] A. Hocini, T. Boumaza, M. Bouchemat, F. Royer, D. Jamon, J.J. Rousseau, Microelectr. J. 39, 99 (2008), doi: 10.1016/j.mejo.2007.09.012
- [10] B.M.A. Rahmann, J.B. Davies, J. Lightwave Technol. 2, 682 (1984), doi: 10.1109/JLT.1984.1073669
- [11] A.S. Sudbo, Pure. Appl. Opt. 2, 211 (1993), doi: 10.1088/0963-9659/2/3/007.11
- [12] R. Chen, D. Tao, H. Zhou, Y. Hao, J. Yang, M. Wang, X. Jiang Opt. Commun. 282, 862 (2009), doi: 10.1016/j.optcom.2008.11.064
- [13] S. Wittekoek, T.J.A. Popma, J.M. Robertson, P.F. Bongers, Phys. Rev. B 12, 2777 (1975), doi: 10.1103/PhysRevB.12.2777
- [14] X. Gao, J.A. Woollam, R.D. Kirby, D.J. Sellmyer, C.T. Tanaka, J. Nowak, J.S. Moodera, Phys. Rev. B 59, 9965 (1999), doi: 10.1103/PhysRevB.59.9965
- [15] N.K. Dissanayake, M. Levy, A.A. Jalali, V.J. Fratello, Appl. Phys. Lett. 96, 181105 (2010), doi: 10.1063/1.3427404
- [16] M. Huang, Z.C. Xu, Appl. Phys. A 81, 193 (2005), doi: 10.1007/s00339-004-2553-x
- [17] A. Hocini, A. Bouchelaghem, D. Saigaa, M. Bouras, T. Boumaza, M. Bouchemat, J. Comput. Electron 12, 50 (2013), doi: 10.1007/s10825-013-0435-1
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.bwnjournal-article-appv127n4092kz