Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1161-1163

Article title

Grain Growth in Sintered Natural Hydroxyapatite

Content

Title variants

Languages of publication

EN

Abstracts

EN
Hydroxyapatite (HA: Ca_{10}(PO₄)₆(OH)₂) can be synthesized using several methods or manufactured from natural materials such as coral or bone after removal of the organic matter by heating (denoted as NHA). The "in vitro" and "in vivo" studies showed that the natural apatite was well tolerated and has better osteoconductive properties than synthetic HA. In addition, the exploitation of natural source represents an economical way of synthesizing NHA by means of sintering, rather than by sol-gel techniques. For these reasons, the NHA was manufactured from cortical bovine bones in all our studies. Moreover, there has been much effort to improve the mechanical properties of HA by introducing foreign oxides or finding out other alternative processes such as grain growth control. Indeed, encouraging lower AGS instead of exaggerated grain growth may be jugged useful for many applications. Since the works carried out on the correlation between AGS and physico-chemical properties of NHA were very limited, the present study was mainly focused on its grain growth. A carful combination between the main parameters controlling NHA production such as milling techniques, compacting pressure, sintering temperature and holding time may lead to an interesting NHA based bio-ceramics. In this way, a simple and energetically vibratory multidirectional milling system using bimodal distribution of highly resistant ceramics has been used for obtaining sub-micron sized NHA powders. For example, the AGS was ranged between 0.75 and 1.40 μm (using intercept method) when NHA samples were sintered at 1250°C for 15 and 480 min, respectively.

Keywords

EN

Contributors

author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.
author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.
author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.
author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.
author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.
author
  • Faculty of Exact Science, Physics department, Ceramics Lab., Constantine University 1, Constantine 25000, Algeria.

References

  • [1] L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991), doi: 10.1111/j.1151-2916.1991.tb07132.x
  • [2] F.Z. Mezahi, H. Oudadesse, A. Harabi, A. Lucas-Girot, Y. Le Gal, H. Chaair, G. Cathelineau, J. Therm. Anal. Calorim. 95, 21 (2009), doi: 10.1007/s10973-008-9065-4
  • [3] A. Harabi, D. Belamri, N. Karboua, F.Z. Mezahi, J. Therm. Anal. Calorim. 104, 383 (2011), doi: 10.1007/s10973-010-1115-z
  • [4] L.L. Hench, J. Wilson, Advanced series in ceramics: An introduction of bioceramics, In: Hench L.L., Wilson J., editors. World Scientific Publishing: Singapore, Vol 1. p. 1-24 1993
  • [5] J. Huaxia, P.M. Marquis, J. Mater. Sci. 28, 1941 (1993)
  • [6] Y.M. Kong, S. Kim, H.E. Kim, I.S. Lee, J. Am. Ceram. Soc. 82, 2963 (1999), doi: 10.1111/j.1151-2916.1999.tb02189.x
  • [7] R. Rao Ramachandra, T.S. Kannan, Mater. Sci. Eng. C 20, 187 (2002), doi: 10.1016/S0928-4931(02)00031-0
  • [8] A. Harabi, A simple and energetically vibratory multidirectional milling system using bimodal distribution of highly resistant ceramics: Applied on hydroxyapatite derived from natural cortical bones, Algerian Patent June 24th, 130393 2013
  • [9] A. Harabi, S. Achour, J. Mater. Sci. Lett. 18, 955 (1999), doi: 10.1023/A:1006698704468
  • [10] M.R. Boudchicha, S. Achour, A. Harabi, J. Mater. Sci. Lett. 20, 215 (2001), doi: 10.1023/A:1006782215366
  • [11] A. Mecif, J. Soro, A. Harabi, J.P. Bonnet, J. Am. Ceram. Soc. 93, 1306 (2010), doi: 10.1111/j.1551-2916.2009.03595.x
  • [12] S. Achour, A. Harabi, N. Tabet, Mater. Sci. Eng. B 42, 289 (1996), doi: 10.1016/S0921-5107(96)01723-0
  • [13] A. Toumiat, S. Achour, A. Harabi, N. Tabet, M. Boumaour, M. Maallemi, Nanotechnology 17, 658 (2006), doi: 10.1088/0957-4484/17/3/007
  • [14] O. Bourbia, S. Achour, N. Tabet, M. Parlinska, A. Harabi, Thin Solid Films 515, 6758 (2007), doi: 10.1016/j.tsf.2007.02.055
  • [15] A. Guechi, S. Ahour, A. Harabi, Key Eng. Mater. 264-268, 257 (2004), doi: 10.4028/www.scientific.net/KEM.264-268.257
  • [16] F. Bouzerara, A. Harabi, S. Achour, A. Larbot, J. Eur. Cer. Soc. 26, 1663 (2006), doi: 10.1016/j.jeurceramsoc.2005.03.244
  • [17] A. Harabi, F. Bouzerara, S. Condom, Des. Wat. Treat. 6, 222 (2009), doi: 10.5004/dwt.2009.646
  • [18] B. Boudaira, A. Harabi, F. Bouzerara, S. Condom, Des. Wat. Treat. 9, 142 (2009), doi: 10.5004/dwt.2009.764
  • [19] F. Bouzerara, A. Harabi, S. Condom, Des. Wat. Treat. 12, 415 (2009), doi: 10.5004/dwt.2009.1051
  • [20] A. Harabi, A. Guechi, S. Condom, Procedia Engineering 33, 220 (2012), doi: 10.1016/j.proeng.2012.01.1197
  • [21] F. Bouzerara, A. Harabi, B. Ghouil, N. Medjemem, B. Boudaira, S. Condom, Procedia Engineering 33, 278 (2012), doi: 10.1016/j.proeng.2012.01.1205
  • [22] A. Harabi, F. Zenikheri, B. Boudaira, F. Bouzerara, A. Guechi, L. Foughali, J. Eur. Ceram. Soc. 34, 1329 (2014), doi: 10.1016/j.jeurceramsoc.2013.11.007
  • [23] F.Z. Mezahi, H. Oudadesse, A. Harabi, A. Lucas-Girot, Y. Le Gal, H. Chaair, G. Cathelineau, J. Therm. Anal. Calorim. 95, 21 (2009), doi: 10.1007/s10973-008-9065-4
  • [24] F.Z. Mezahi, H. Oudadesse, A. Harabi, Y.L. Gal, Int. J. Appl. Ceram. Technol. 9, 529 (2012), doi: 10.1111/j.1744-7402.2011.02742.x
  • [25] A. Harabi, S. Chehlatt, J. Therm. Anal. Calorim. 111, 203 (2013), doi: 10.1007/s10973-012-2242-5
  • [26] A. Harabi, S. Zouai, Int. J. Appl. Ceram. Technol. 11, 31 (2014), doi: 10.1111/ijac.12047
  • [27] A. Lucas-Girot, F.Z. Mezahi, M. Mami, H. Oudadesse, A. Harabi, M. Le Floch, J. Non-Cryst. Solids 357, 3322 (2011), doi: 10.1016/j.jnoncrysol.2011.06.002
  • [28] F.Z. Mezahi, A. Lucas-Girot, H. Oudadesse, A. Harabi, J. Non-Cryst. Solids 361, 111 (2013), doi: 10.1016/j.jnoncrysol.2012.10.013
  • [29] F.Z. Mezahi, A. Harabi, S. Zouai, S. Achour, D. Bernache-Assollant, 10.4028/www.scientific.net/MSF.492-493.241HUKHUKMater. Sci. Forum. 492-493, 241 (2005)
  • [30] S.J. Kalita, S. Bose, H.L. Hosick, A. Bandyopadhyay, Biomaterials 25, 2331 (2004), doi: 10.1016/j.biomaterials.2003.09.012
  • [31] S. Nath, A. Day, A.K. Mukhopadhyay, B. Basu, Mater. Sci. Eng. A 513-514, 197 (2009), doi: 10.1016/j.msea.2009.02.052
  • [32] A. Harabi, Ph.D. Thesis, Manchester Materials Science Centre, UMIST, Manchester, UK 1990

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4083kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.