Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1124-1127

Article title

Compact Modeling of the Performance of SB-CNTFET as a Function of Geometrical and Physical Parameters

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this work, we study the effects of geometrical and physical parameters on the performances of SB-CNTFET using a compact model. The influences of the physical parameters (height of the Schottky barrier (Φ_{SB}) capacity of oxide layer (C_{INS}) and geometrical parameter (nanotube diameter (d_{CNT})) on the static performance (I_{ON}/I_{OFF}) of SB-CNTFET have been investigated. We present a detailed analysis of the electrical performance of the SB-CNTFET or current-voltage characteristics (I_{D}=f(V_{DS}) for different values of V_{GS}, and also the characteristics (I_{D}=f(V_{GS})) for different values of V_{DS}. All these circuits are studied for a fixed value of Φ_{SB}=0.275 eV.

Keywords

EN

Year

Volume

127

Issue

4

Pages

1124-1127

Physical description

Dates

published
2015-04

Contributors

author
  • Department of Electronics, University Mohamed Boudiaf of M'sila BP.166, Route Ichebilia, M'sila 28000 Algeria
author
  • Department of Electronics, University Mohamed Boudiaf of M'sila BP.166, Route Ichebilia, M'sila 28000 Algeria

References

  • [1] D.T. Trinh, Thesis, Portes logiques à base de CNTFETs - Dispersion des caractéristiques et tolérance aux défauts, Grenoble polytechnique, 2008
  • [2] D. Tomanek, R.J. Enbody, Science and Application of Nanotubes, Fundamental Materials Research, Kluwer Academic Publishers, 2002
  • [3] M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous world of carbon nanotubes, Eindhoven University of Technology, 2003
  • [4] M.A. Reed, T. Lee, Molecular Nanoelectronic, American Scientific Publishers, 2003
  • [5] S. J Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Letters. 80, 3817 (2002), doi: 10.1063/1.1480877
  • [6] J. Appenzeller, J. Knoch, Ph. Avouris, Carbon nanotube field-effect transistors an example of an ultra-thin body Schottky barrier device, 61th Device Research Conference Digest. IEEE, p. 167, 2003, doi: 10.1109/DRC.2003.1226919
  • [7] Y.M. Lin, J. Appenzeller, Ph. Avouris, Novel structures enabling bulk switching in carbon nanotube FET, 62th Device Research Conference Digest. IEEE, p. 133, 2004, doi: 10.1109/DRC.2004.1367820
  • [8] J. Knoch, S. Mantl, J. Appenzeller, Solid State Electron. 49, 73 (2005), doi: 10.1016/j.sse.2004.07.002
  • [9] Y.M. Lin, J. Appenzeller, J. Knoch, P. Avouris, IEEE T. Nanotechnol. 4, 481 (2005), doi: 10.1109/TNANO.2005.851427
  • [10] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai , Nature 424, 654 (2003), doi: 10.1038/nature01797
  • [11] J. Appenzeller, Y.M. Lin, J. Knoch, Z. Chen, P. Avouris, IEEE T. Electron Dev. 52, 2568 (2005), doi: 10.1109/TED.2005.859654
  • [12] YF. Chen, MS. Fuhrer, Nano Lett. 6, 2158 (2006), doi: 10.1021/nl061379b
  • [13] S. Hasan, S. Salahuddin, M. Vaidyanathan, M.A. Alam, IEEE T. Nanotechnol. 5, 14 (2006), doi: 10.1109/TNANO.2005.858594
  • [14] D.K. Ferry, S.M. Goodnick, T.J. Bird, Transport in Nanostructures, Cambridge University Press, 2009
  • [15] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 2007
  • [16] S. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 1981
  • [17] I. Gradshteyn, I. Ryzhik, Table of Integrals, Series and Products , Academic Press Inc., U.S., 1966

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.bwnjournal-article-appv127n4074kz
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.