Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1124-1127
Article title

Compact Modeling of the Performance of SB-CNTFET as a Function of Geometrical and Physical Parameters

Title variants
Languages of publication
In this work, we study the effects of geometrical and physical parameters on the performances of SB-CNTFET using a compact model. The influences of the physical parameters (height of the Schottky barrier (Φ_{SB}) capacity of oxide layer (C_{INS}) and geometrical parameter (nanotube diameter (d_{CNT})) on the static performance (I_{ON}/I_{OFF}) of SB-CNTFET have been investigated. We present a detailed analysis of the electrical performance of the SB-CNTFET or current-voltage characteristics (I_{D}=f(V_{DS}) for different values of V_{GS}, and also the characteristics (I_{D}=f(V_{GS})) for different values of V_{DS}. All these circuits are studied for a fixed value of Φ_{SB}=0.275 eV.
Physical description
  • [1] D.T. Trinh, Thesis, Portes logiques à base de CNTFETs - Dispersion des caractéristiques et tolérance aux défauts, Grenoble polytechnique, 2008
  • [2] D. Tomanek, R.J. Enbody, Science and Application of Nanotubes, Fundamental Materials Research, Kluwer Academic Publishers, 2002
  • [3] M. Daenen, R.D. de Fouw, B. Hamers, P.G.A. Janssen, K. Schouteden, M.A.J. Veld, The Wondrous world of carbon nanotubes, Eindhoven University of Technology, 2003
  • [4] M.A. Reed, T. Lee, Molecular Nanoelectronic, American Scientific Publishers, 2003
  • [5] S. J Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Letters. 80, 3817 (2002), doi: 10.1063/1.1480877
  • [6] J. Appenzeller, J. Knoch, Ph. Avouris, Carbon nanotube field-effect transistors an example of an ultra-thin body Schottky barrier device, 61th Device Research Conference Digest. IEEE, p. 167, 2003, doi: 10.1109/DRC.2003.1226919
  • [7] Y.M. Lin, J. Appenzeller, Ph. Avouris, Novel structures enabling bulk switching in carbon nanotube FET, 62th Device Research Conference Digest. IEEE, p. 133, 2004, doi: 10.1109/DRC.2004.1367820
  • [8] J. Knoch, S. Mantl, J. Appenzeller, Solid State Electron. 49, 73 (2005), doi: 10.1016/j.sse.2004.07.002
  • [9] Y.M. Lin, J. Appenzeller, J. Knoch, P. Avouris, IEEE T. Nanotechnol. 4, 481 (2005), doi: 10.1109/TNANO.2005.851427
  • [10] A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai , Nature 424, 654 (2003), doi: 10.1038/nature01797
  • [11] J. Appenzeller, Y.M. Lin, J. Knoch, Z. Chen, P. Avouris, IEEE T. Electron Dev. 52, 2568 (2005), doi: 10.1109/TED.2005.859654
  • [12] YF. Chen, MS. Fuhrer, Nano Lett. 6, 2158 (2006), doi: 10.1021/nl061379b
  • [13] S. Hasan, S. Salahuddin, M. Vaidyanathan, M.A. Alam, IEEE T. Nanotechnol. 5, 14 (2006), doi: 10.1109/TNANO.2005.858594
  • [14] D.K. Ferry, S.M. Goodnick, T.J. Bird, Transport in Nanostructures, Cambridge University Press, 2009
  • [15] S. Datta, Electronic Transport in Mesoscopic Systems, Cambridge University Press, 2007
  • [16] S. Sze, Physics of Semiconductor Devices, John Wiley and Sons, 1981
  • [17] I. Gradshteyn, I. Ryzhik, Table of Integrals, Series and Products , Academic Press Inc., U.S., 1966
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.