Preferences help
enabled [disable] Abstract
Number of results
2015 | 127 | 4 | 1079-1082
Article title

Usage of Colemanite in Transparent Wall Tile Glazes

Title variants
Languages of publication
Boric oxide has an important place in glaze technology and is the second most important network-former after silica. Lower thermal expansion coefficient; higherchemical and mechanical durability; good glaze appearance are some of the benefits of boric oxide. In wall tile production; generally transparent frits with 1-7% boric oxide are used to obtain glossy transparent glaze. It can be said that boric acid is the fourth expensive raw material in frit production after zirconium, zinc oxide and potassium carbonate due to its high cost limits its usage in frit production. The aim of this study is to investigate colemanite (CaB₃O₄(OH)₃·H₂O) mineral usage in transparent frit production instead of using boric acid. To achieve this aim, four different frit mixtures Std, K.1, K.2 and K.3 with 0 wt.%, 3 wt.%, 6.5 wt.% and 11.5 wt.% colemanite content were prepared respectively. For comparison of the thermal behavior of frits, hot stage microscope was used. It was observed that, all of the samples prepared with colemanite have lower sintering and softening temperatures than the standard recipe because of its high earth alkaline oxide content. The obtained glazes were characterized by X-ray diffraction, dilatometer, Harcourt and Autoclave tests.
Physical description
  • [1]
  • [2] N. Ediz, A. Yurdakul, Journal of Ceramic Processing Research 10, 758 (2009)
  • [3]
  • [4] B. Karasu, E. Gerede, I. International Boron Symposium, Fulltext Book, 198 (2002)
  • [5] M.P. Gomez-Tena, A. Moreno, E. Bou, S. Cook, M. Galindo, M.J. Vicente, Qualicer, 1 (2010)
  • [6] A. Kartal, H. Gürtekin, I.International Boron Symposium, Fulltext Book, 48 (2002)
  • [7] A. Yaık, I. Bentli, C. Karaguzel, M. Inar, B. Cengiz, International Mining Congress and Exhibition of Turkey, 753 (2001)
  • [8] N.V. Mazura, I.A. Levitskii, Glass and Ceramics 65, 19 (2008), doi: 10.1007/s10717-008-9010-9
  • [9] ISO 10545-9, Ceramic Tile Part 9: Determination of resistance to thermal shock, Switzerland, 1997
  • [10] ISO 10545-11, Ceramic Tile Part 11, Determination of crazing resistance for glazed tiles, Switzerland, 1997
  • [11] X. Zhou, B. Li, S. Zhang, H. Ning, J. Mater Sci: Mater Electron 20, 262 (2009), doi: 10.1007/s10854-008-9717-y
  • [12] R.C. De Vekey, A.J. Majumdar, Glass Tech. 14, 125 (1973)
  • [13] Z. Yang, Q.Lin, S. Lu, Y. He, G. Liao, Y. Ke, Ceram. Int. 40, 7297 (2014), doi: 10.1016/j.ceramint.2013.12.071
  • [14] J. Ma, C.Z. Chen, D.G. Wang, J.Z. Shi, Materials Science and Engineering C 30, 886 (2010), doi: 10.1016/j.ceramint.2010.03.017
  • [15] M. Kerstan, M. Müller, C. Rüssel, Materials Research Bulletin 46, 2456 (2011), doi: 10.1016/j.materresbull.2011.08.031
  • [16] S.Kurama, A.Kara, H.Kurama, Journal of European Ceramic Society 26, 755 (2006), doi: 10.1016/j.jeurceramsoc.2005.07.039
  • [17] T.K. Mukhopadhyay, M. Das, S. Ghosh, S. Chakrabarti, S. Ghatak, Ceram. Int. 29, 587 (2003), doi: 10.1016/S0272-8842(02)00206-7
  • [18] M. Dondi, V. Biasini, G. Guarini, M. Raimondo, A. Argnani, S. Di Primio, Key Eng. Mater. 206, 1795 (2002)
  • [19] Z. Bayer Ozturk, N. Ay, Journal Ceramic Processing Research 13, 635 (2012)
  • [20] D. Bellucci, V. Cannillo, A. Sola, Ceram. Int. 37, 2963 (2011), doi: 10.1016/j.ceramint.2011.05.048
  • [21] M.J. Jackson, B. Mills, J. Mater. Sci. Lett. 16, 1264 (1997), doi: 10.1023/A:1018566606548
  • [22] M.B. Volf in: Mathemathical approch to glass, Glass Science and Technology 9 Amsterdam, Oxford, New York, Tokyo, 1988
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.